(本小題滿分12分)已知的兩頂點(diǎn)坐標(biāo),,圓是的內(nèi)切圓,在邊,,上的切點(diǎn)分別為,(從圓外一點(diǎn)到圓的兩條切線段長相等),動(dòng)點(diǎn)的軌跡為曲線.
(1)求曲線的方程;
(2)設(shè)直線與曲線的另一交點(diǎn)為,當(dāng)點(diǎn)在以線段為直徑的圓上時(shí),求直線的方程.
(1);(2)直線的方程或.
解析試題分析:本題主要考查橢圓的第一定義、橢圓的標(biāo)準(zhǔn)方程、橢圓的幾何意義、直線的方程、向量垂直的充要條件等基礎(chǔ)知識,考查用代數(shù)法研究圓錐曲線的性質(zhì)以及數(shù)形結(jié)合的數(shù)學(xué)思想方法,考查運(yùn)算求解能力、綜合分析和解決問題的能力.第一問,利用圓外一點(diǎn)到圓的兩條切線段長相等,轉(zhuǎn)化邊,得到,所以判斷出曲線是以為焦點(diǎn),長軸長為的橢圓(挖去與軸的交點(diǎn)),利用已知求出橢圓標(biāo)準(zhǔn)方程中的基本量;第二問,根據(jù)已知設(shè)出直線的方程,直線與曲線聯(lián)立,消參得關(guān)于的方程,求出方程的2個(gè)根,并且寫出兩根之和兩根之積,因?yàn)辄c(diǎn)在以為直徑的圓上,所以只需使,解出參數(shù)從而得到直線的方程.
試題解析:⑴解:由題知
所以曲線是以為焦點(diǎn),長軸長為的橢圓(挖去與軸的交點(diǎn)),
設(shè)曲線:,
則,
所以曲線:為所求. 4分
⑵解:注意到直線的斜率不為,且過定點(diǎn),
設(shè),
由
消得,所以,
所以 8分
因?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/16/c/1vpcw4.png" style="vertical-align:middle;" />,所以
注意到點(diǎn)在以為直徑的圓上,所以,即,-----11分
所以直線的方程或為所求.------12分
考點(diǎn):1.橢圓的第一定義;2.橢圓的標(biāo)準(zhǔn)方程;3.直線與橢圓的位置關(guān)系;4.韋達(dá)定理;5.向量垂直的充要條件.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,橢圓經(jīng)過點(diǎn),其左、右頂點(diǎn)分別是、,左、右焦點(diǎn)分別是、,(異于、)是橢圓上的動(dòng)點(diǎn),連接交直線于、兩點(diǎn),若成等比數(shù)列.
(Ⅰ)求此橢圓的離心率;
(Ⅱ)求證:以線段為直徑的圓過點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知拋物線:和⊙:,過拋物線上一點(diǎn)作兩條直線與⊙相切于、兩點(diǎn),分別交拋物線為E、F兩點(diǎn),圓心點(diǎn)到拋物線準(zhǔn)線的距離為.
(1)求拋物線的方程;
(2)當(dāng)的角平分線垂直軸時(shí),求直線的斜率;
(3)若直線在軸上的截距為,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知、為橢圓的左、右焦點(diǎn),且點(diǎn)在橢圓上.
(1)求橢圓的方程;
(2)過的直線交橢圓于兩點(diǎn),則的內(nèi)切圓的面積是否存在最大值?
若存在其最大值及此時(shí)的直線方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C的左、右焦點(diǎn)分別為,橢圓的離心率為,且橢圓C經(jīng)過點(diǎn).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若線段是橢圓過點(diǎn)的弦,且,求內(nèi)切圓面積最大時(shí)實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)已知橢圓的離心率為,在橢圓C上,A,B為橢圓C的左、右頂點(diǎn).
(1)求橢圓C的方程:
(2)若P是橢圓上異于A,B的動(dòng)點(diǎn),連結(jié)AP,PB并延長,分別與右準(zhǔn)線相交于M1,M2.問是否存在x軸上定點(diǎn)D,使得以M1M2為直徑的圓恒過點(diǎn)D?若存在,求點(diǎn)D的坐標(biāo):若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某校同學(xué)設(shè)計(jì)一個(gè)如圖所示的“蝴蝶形圖案(陰影區(qū)域)”,其中、是過拋物線焦點(diǎn)的兩條弦,且其焦點(diǎn),,點(diǎn)為軸上一點(diǎn),記,其中為銳角.
(1)求拋物線方程;
(2)如果使“蝴蝶形圖案”的面積最小,求的大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知橢圓的方程為,雙曲線的兩條漸近線為、.過橢圓的右焦點(diǎn)作直線,使,又與交于點(diǎn),設(shè)與橢圓的兩個(gè)交點(diǎn)由上至下依次為、.
(1)若與的夾角為,且雙曲線的焦距為,求橢圓的方程;
(2)求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在直角坐標(biāo)系中,已知中心在原點(diǎn),離心率為的橢圓E的一個(gè)焦點(diǎn)為圓的圓心.
⑴求橢圓E的方程;
⑵設(shè)P是橢圓E上一點(diǎn),過P作兩條斜率之積為的直線,當(dāng)直線都與圓相切時(shí),求P點(diǎn)坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com