若函數(shù)f(x)=x2+(a-2)x+6在區(qū)間[1,+∞)上是增函數(shù),那么實(shí)數(shù)a的取值范圍是( 。
A、a≥0B、a≤0
C、a≥4D、a≤4
考點(diǎn):二次函數(shù)的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)二次函數(shù)的單調(diào)性與開口方向和對稱軸有關(guān),先求出函數(shù)的對稱軸,然后結(jié)合開口方向可知[1,+∞)是[-
a-2
2
,+∞)的子集即可.
解答: 解:二次函數(shù)f(x)=x2+(a-2)x+6是開口向上的二次函數(shù)
對稱軸為x=-
a-2
2
,
∴二次函數(shù)f(x)=x2+(a-2)x+6在[-
a-2
2
,+∞)上是增函數(shù)
∵在區(qū)間[1,+∞)上是增函數(shù),
∴x=-
a-2
2
≤1,
解得:a≥0
故選:A
點(diǎn)評:本題主要考查了二次函數(shù)的單調(diào)性,二次函數(shù)是高考中的熱點(diǎn)問題,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),x軸非負(fù)半軸為極軸,在兩種坐標(biāo)系中取相同單位的長度.已知直線l的方程為
ρcosθ-ρsinθ-1=0(ρ>0),曲線C的參數(shù)方程為
x=2cosα
y=2+2sinα
(α為參數(shù)),點(diǎn)M是曲線C上的一動點(diǎn).
(Ⅰ)求線段OM的中點(diǎn)P的軌跡方程;
(Ⅱ)求曲線C上的點(diǎn)到直線l的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:
①函數(shù)y=cos(x-
π
2
)
是奇函數(shù);
②若α、β是第一象限角,且α<β,則tanα<tanβ;
③將函數(shù)y=3sin(2x+
π
3
)
的圖象向右平移
π
3
個單位長度得到y(tǒng)=3sin2x;
④若x∈(0,
π
2
)
,則函數(shù)y=3sin(2x+
π
3
)
的值域?yàn)?span id="a2e6kew" class="MathJye">(-
3
3
2
,3]
則其中正確命題序號為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={4},B={1,2},C={1,3,5},從這三個集合中各取一個元素構(gòu)成空間直角坐標(biāo)系中的點(diǎn)的坐標(biāo),則確定的不同點(diǎn)的個數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:
①若a>b,則
1
a
1
b
成立的充要條件是ab>0;
②若不等式x2+ax-4<0對任意x∈(-1,1)恒成立,則a的取值范圍為(-3,3);
③數(shù)列{an}滿足:a1=2068,且an+1+an+n2=0(n∈N*),則a11=2013;
④設(shè)0<x<1,則
a2
x
+
b2
1-x
的最小值為(a+b)2
其中所有真命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=kax-a-x(a>0且a≠1)在R上是奇函數(shù),且是增函數(shù),則函數(shù)g(x)=loga(x-k)的大致圖象是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題:
(1)函數(shù)y=
1
x
+x(x<0)
的值域是(-∞,-2];
(2)函數(shù)y=x2+2+
1
x2+2
最小值是2;
(3)若a,b同號且a≠b,則
a
b
+
b
a
>2

其中正確的命題是(  )
A、(1)(2)(3)
B、(1)(2)
C、(2)(3)
D、(1)(3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

記等比數(shù)列{an}的前n項(xiàng)積為Πn,若a4•a5=2,則Π8=(  )
A、256B、81C、16D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

己知橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的右焦點(diǎn)為F(1,0),點(diǎn)A(2,0)在橢圓C上,過F點(diǎn)的直線l與橢圓C交于不同兩點(diǎn)M,N.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)直線l斜率為1,求線段MN的長;
(Ⅲ)設(shè)線段MN的垂直平分線交y軸于點(diǎn)P(0,y0),求y0的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案