【題目】已知函數是定義在上的偶函數.當時, .
(1) 求曲線在點處的切線方程;
(2) 若關于的不等式恒成立,求實數的取值范圍.
【答案】(1)(2)
【解析】試題分析:(1)根據是偶函數,當時, ,可得當時, , ,求出可得切線斜率,求出,可得切點坐標,由點斜式可得切線方程;(2)令,則原命題等價于, 恒成立, 即恒成立,設,利用導數研究函數的單調性,求出的最大值為,從而可得實數的取值范圍為.
試題解析:因為為偶函數,所以,
當時,則,故 ,所以,
從而得到, ,
(1)當時, ,所以
所以在點的切線方程為: ,即
(2)關于的不等式恒成立,即 恒成立
令,則原命題等價于, 恒成立,
即恒成立,
記, ,
當時, ,則遞增;當時, ,則遞減;
所以,當時, 取極大值,也是最大值,
所以,
即實數a的范圍為 .
【方法點晴】本題主要考查利用導數求曲線切線方程以及利用導數研究函數的單調性與最值、不等式恒成立問題,屬于難題.求曲線切線方程的一般步驟是:(1)求出在處的導數,即在點 出的切線斜率(當曲線在處的切線與軸平行時,在 處導數不存在,切線方程為);(2)由點斜式求得切線方程.
科目:高中數學 來源: 題型:
【題目】若函數f(x)=sin2ax-sin ax·cos ax- (a>0)的圖象與直線y=b相切,并且切點的橫坐標依次成公差為的等差數列.
(1)求a,b的值;
(2)若x0∈,且x0是y=f(x)的零點,試寫出函數y=f(x)在上的單調增區(qū)間.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,橢圓的下頂點為,點是橢圓上異于點的動點,直線分別與軸交于點,且點是線段的中點.當點運動到點處時,點的坐標為.
(1)求橢圓的標準方程;
(2)設直線交軸于點,當點均在軸右側,且時,求直線的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示為一正方體的平面展開圖,在這個正方體中,有下列四個命題:
①AF⊥GC;
②BD與GC成異面直線且夾角為60;
③BD∥MN;
④BG與平面ABCD所成的角為45.
其中正確的個數是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖1, 在直角梯形中, , , , 為線段的中點. 將沿折起,使平面 平面,得到幾何體,如圖2所示.
(1)求證: 平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司計劃購買2臺機器,該種機器使用三年后即被淘汰.機器有一易損零件,在購進機器時,可以額外購買這種零件作為備件,每個200元.在機器使用期間,如果備件不足再購買,則每個500元.現(xiàn)需決策在購買機器時應同時購買幾個易損零件,為此搜集并整理了100臺這種機器在三年使用期內更換的易損零件數,得下面柱狀圖:
以這100臺機器更換的易損零件數的頻率代替1臺機器更換的易損零件數發(fā)生的概率,記X表示2臺機器三年內共需更換的易損零件數,n表示購買2臺機器的同時購買的易損零件數.
(1)求X的分布列;
(2)若要求P(X≤n)≤0.5,確定n的最小值;
(3)以購買易損零件所需費用的期望值為決策依據,在n=19與n=20之中選其一,應選用哪個?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】近年來我國電子商務行業(yè)迎來發(fā)展的新機遇,2017年雙11全天交易額達到1682億元,為規(guī)范和評估該行業(yè)的情況,相關管理部門制定出針對電商的商品和服務的評價體系.現(xiàn)從評價系統(tǒng)中選出200次成功交易,并對其評價進行評價,對商品的好評率為0.6,對服務的好評率為0.75,其中對商品和服務都做出好評的交易為80次.
(1)完成關于商品和服務評價的列聯(lián)表,判斷能否在犯錯誤的概率不超過0.001的前提下,認為商品好評與服務好評有關?
(2)若將頻率視為概率,某人在該購物平臺上進行的3次購物中,設對商品和服務全為好評的次數為隨機變量:
①求對商品和服務全為好評的次數的分布列;
②求的數學期望和方差.
附:臨界值表:
的觀測值: (其中)
關于商品和服務評價的列聯(lián)表:
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com