【題目】已知:方程有兩個不等的負根; :方程無實根.為真,為假,求的取值范圍.

【答案】(1,2]∪[3+∞

【解析】試題分析:本題考查邏輯聯(lián)接詞,由為真,為假可知,,先求命題為真命題時實數(shù)的取值范圍,從而得到為假命題時的取值范圍,同樣先求命題為真命題時的取值范圍,再求為假命題時的取值范圍,然后求的范圍,求的范圍,最后取兩部分范圍的并集.

試題解析:若方程有兩個不等的負根,則,解得.

………………2

若方程無實根,

,

解得: ,即.…………4

為真,所以至少有一為真,又為假,所以至少有一為假,

因此, 兩命題應一真一假,即為真, 為假或為假, 為真.……6

.

解得: .…………………………10

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】學校某研究性學習小組在對學生上課注意力集中情況的調(diào)查研究中,發(fā)現(xiàn)其在40分鐘的一節(jié)課中,注意力指數(shù)與聽課時間(單位:分鐘)之間的關(guān)系滿足如圖所示的圖象,當時,圖象是二次函數(shù)圖象的一部分,其中頂點,過點;當時,圖象是線段,其中.根據(jù)專家研究,當注意力指數(shù)大于62時,學習效果最佳.

1)試求的函數(shù)關(guān)系式;

2)教師在什么時段內(nèi)安排內(nèi)核心內(nèi)容,能使得學生學習效果最佳?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),為其導函數(shù),且有極小值-9.

(1)求的單調(diào)遞減區(qū)間;

(2)若,,當時,對于任意的值至少有一個是正數(shù),求實數(shù)的取值范圍;

(3)若不等式為正整數(shù))對任意正實數(shù)恒成立,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知的三個頂點,,其外接圓為.

(1)求的面積;

(2)若直線過點,且被截得的弦長為2,求直線的方程;

(3)對于線段上的任意一點,若在以為圓心的圓上都存在不同的兩點,,使得點的線段的中點,求的半徑的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知圓和圓

(1)若直線過點,且被圓截得的弦長為是,求直線的方程;

(2)設為平面上的點,滿足:存在過點的無窮多對互相垂直的直線,它們分別與圓和圓相交,且直線與被圓截得的弦長與直線被圓截得的弦長相等,試求所有滿足條件的點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我國是世界上嚴重缺水的國家,城市缺水尤為突出.某市為了制定合理的節(jié)水方案,從該市隨機調(diào)查了100位居民,獲得了他們某月的用水量,整理得到如圖的頻率分布直方圖.

1)求圖中的值并估計樣本的眾數(shù);

2)設該市計劃對居民生活用水試行階梯水價,即每位居民用水量不超過噸的按2元/噸收費,超過噸不超過2噸的部分按4元/噸收費,超過2噸的部分按照10元/噸收費.

用樣本估計總體,為使75%以上居民在該月的用水價格不超過4元/噸,至少定為多少?

假設同組中的每個數(shù)據(jù)用該組區(qū)間的右端點值代替,當時,估計該市居民該月的人均水費.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我國是世界上嚴重缺水的國家,城市缺水尤為突出.某市為了制定合理的節(jié)水方案,從該市隨機調(diào)查了100位居民,獲得了他們某月的用水量,整理得到如圖的頻率分布直方圖.

(1)求圖中的值;

(2)設該市有500萬居民,估計全市居民中月均用水量不低于3噸的人數(shù),說明理由:

(3)估計本市居民的月用水量平均數(shù)同一組中的數(shù)據(jù)用該區(qū)間的中點值代表.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù))的一系列對應值如表:

(1)根據(jù)表格提供的數(shù)據(jù)求函數(shù)的一個解析式;

(2)根據(jù)(1)的結(jié)果:

時,方程恰有兩個不同的解,求實數(shù)的取值范圍;

,是銳角三角形的兩個內(nèi)角,試比較的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某班主任對全班50名學生進行了作業(yè)量多少的調(diào)查.數(shù)據(jù)如下表:

認為作業(yè)多

認為作業(yè)不多

合計

喜歡玩游戲

18

9

不喜歡玩游戲

8

15

合計

1請完善上表中所缺的有關(guān)數(shù)據(jù);

2試通過計算說明在犯錯誤的概率不超過多少的前提下認為喜歡玩游戲與作業(yè)量的多少有關(guān)系?

附:

PK2K0

0.05

0.025

0.010

0.005

0.001

K0

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

同步練習冊答案