【題目】為了解戶籍、性別對(duì)生育二胎選擇傾向的影響,某地從育齡人群中隨機(jī)抽取了容量為200的調(diào)查樣本,其中城鎮(zhèn)戶籍與農(nóng)村戶籍各100人;男性120人,女性80人,繪制不同群體中傾向選擇生育二胎與傾向選擇不生育二胎的人數(shù)比例圖,如圖所示,其中陰影部分表示傾向選擇生育二胎的對(duì)應(yīng)比例,則下列敘述中錯(cuò)誤的是( )

A. 是否傾向選擇生育二胎與戶籍有關(guān)

B. 是否傾向選擇生育二胎與性別有關(guān)

C. 傾向選擇生育二胎的人群中,男性人數(shù)與女性人數(shù)相同

D. 傾向選擇不生育二胎的人群中,農(nóng)村戶籍人數(shù)少于城鎮(zhèn)戶籍人數(shù)

【答案】C

【解析】

由題意,通過閱讀理解、識(shí)圖,將數(shù)據(jù)進(jìn)行比對(duì),通過計(jì)算可得出C選項(xiàng)錯(cuò)誤.

由比例圖可知,是否傾向選擇生育二胎與戶籍、性別有關(guān),傾向選擇不生育二胎的人員中,農(nóng)村戶籍人數(shù)少于城鎮(zhèn)戶籍人數(shù),

傾向選擇生育二胎的人員中,男性人數(shù)為人,女性人數(shù)為人,男性人數(shù)與女性人數(shù)不相同,故C錯(cuò)誤,故選:C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于數(shù)列,若存在常數(shù)M,使得對(duì)任意中至少有一個(gè)不小于M,則記作,那么下列命題正確的是( ).

A.,則數(shù)列各項(xiàng)均大于或等于M

B.,則;

C.,,則

D.,則;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,右焦點(diǎn)為,左頂點(diǎn)為A,右頂點(diǎn)B在直線上.

(Ⅰ)求橢圓C的方程;

(Ⅱ)設(shè)點(diǎn)P是橢圓C上異于AB的點(diǎn),直線交直線于點(diǎn),當(dāng)點(diǎn)運(yùn)動(dòng)時(shí),判斷以為直徑的圓與直線PF的位置關(guān)系,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)Px,y)是平面內(nèi)的動(dòng)點(diǎn),定點(diǎn)F1,0),定直線lx=﹣1x軸交于點(diǎn)E,過點(diǎn)PPQl于點(diǎn)Q,且滿足 .

1)求動(dòng)點(diǎn)P的軌跡t的方程;

2)過點(diǎn)F作兩條互相垂直的直線,分別交曲線t于點(diǎn)A,B,和點(diǎn)C,D.設(shè)線段AB和線段CD的中點(diǎn)分別為MN,記線段MN的中點(diǎn)為K,點(diǎn)O為坐標(biāo)原點(diǎn),求直線OK的斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知?jiǎng)訄A與軸相切于點(diǎn),過點(diǎn)分別作動(dòng)圓異于軸的兩切線,設(shè)兩切線相交于,點(diǎn)的軌跡為曲線.

1)求曲線的軌跡方程;

2)過的直線與曲線相交于不同兩點(diǎn),若曲線上存在點(diǎn),使得成立,求實(shí)數(shù)的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè).

1)若,且為函數(shù)的一個(gè)極值點(diǎn),求函數(shù)的單調(diào)遞增區(qū)間;

2)若,且函數(shù)的圖象恒在軸下方,其中是自然對(duì)數(shù)的底數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓,橢圓的長軸為短軸,且兩個(gè)橢圓的離心率相同,設(shè)O為坐標(biāo)原點(diǎn),點(diǎn)AB分別在橢圓、上,若,則直線AB的斜率k為( .

A.1B.-1C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,,,,,平面,點(diǎn)在棱.

1)求證:平面平面;

2)若直線平面,求此時(shí)三棱椎的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)拋物線的焦點(diǎn)為,準(zhǔn)線為,為拋物線過焦點(diǎn)的弦,已知以為直徑的圓與相切于點(diǎn).

1)求的值及圓的方程;

2)設(shè)上任意一點(diǎn),過點(diǎn)的切線,切點(diǎn)為,證明:.

查看答案和解析>>

同步練習(xí)冊(cè)答案