【題目】已知橢圓的離心率為,以橢圓的2個焦點與1個短軸端點為頂點的三角形的面積為2。
(1)求橢圓的方程;
(2)如圖,斜率為k的直線l過橢圓的右焦點F,且與橢圓交與A,B兩點,以線段AB為直徑的圓截直線x=1所得的弦的長度為,求直線l的方程。
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2+2alnx.
(1)若函數(shù)f(x)的圖象在(2,f(2))處的切線斜率為1,求實數(shù)a的值;
(2)若函數(shù)在[1,2]上是減函數(shù),求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為了提高職工的健身意識,鼓勵大家加入健步運動,要求200名職工每天晚上9:30上傳手機計步截圖,對于步數(shù)超過10000的予以獎勵.圖1為甲乙兩名職工在某一星期內(nèi)的運動步數(shù)統(tǒng)計圖,圖2為根據(jù)這星期內(nèi)某一天全體職工的運動步數(shù)做出的頻率分布直方圖.
(1)在這一周內(nèi)任選兩天檢查,求甲乙兩人兩天全部獲獎的概率;
(2)請根據(jù)頻率分布直方圖,求出該天運動步數(shù)不少于15000的人數(shù),并估計全體職工在該天的平均步數(shù);
(3)如果當(dāng)天甲的排名為第130名,乙的排名為第40名,試判斷做出的是星期幾的頻率分布直方圖.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某超市在節(jié)日期間進行有獎促銷,凡在該超市購物滿元的顧客,將獲得一次摸獎機會,規(guī)則如下:一個袋子裝有只形狀和大小均相同的玻璃球,其中兩只是紅色,三只是綠色,顧客從袋子中一次摸出兩只球,若兩只球都是紅色,則獎勵元;共兩只球都是綠色,則獎勵元;若兩只球顏色不同,則不獎勵.
(1)求一名顧客在一次摸獎活動中獲得元的概率;
(2)記為兩名顧客參與該摸獎活動獲得的獎勵總數(shù)額,求隨機變量的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的中心在坐標原點,其焦點與雙曲線的焦點重合,且橢圓的短軸的兩個端點與其一個焦點構(gòu)成正三角形.
(1)求橢圓的方程;
(2)過雙曲線的右頂點作直線與橢圓交于不同的兩點.設(shè),當(dāng)為定值時,求的值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)的圖象向右平移個單位后得到函數(shù)的圖象,則( )
A. 圖象關(guān)于直線對稱 B. 圖象關(guān)于點中心對稱
C. 在區(qū)間單調(diào)遞增 D. 在區(qū)間上單調(diào)遞減
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) (a∈R,e為自然對數(shù)的底數(shù)),,其中在x=0處的切線方程為y=bx.
(1)求a,b的值;
(2)求證:;
(3)求證:有且僅有兩個零點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,曲線(為參數(shù),實數(shù)),曲線(為參數(shù),實數(shù)).在以為極點,軸的正半軸為極軸的極坐標系中,射線與交于,兩點,與交于,兩點.當(dāng)時,;當(dāng)時,.
(Ⅰ)求,的值及曲線 和極坐標方程;
(Ⅱ)求的最大值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】 稿酬所得以個人每次取得的收入,定額或定率減除規(guī)定費用后的余額為應(yīng)納稅所得額,每次收入不超過4000元,定額減除費用800元;每次收入在4000元以上的,定率減除20%的費用.適用20%的比例稅率,并按規(guī)定對應(yīng)納稅額減征30%,計算公式為:
(1)每次收入不超過4000元的:應(yīng)納稅額=(每次收入額-800)×20%×(1-30%)
(2)每次收入在4000元以上的:應(yīng)納稅額=每次收入額×(1-20%)×20%×(1-30%).已知某人出版一份書稿,共納稅280元,這個人應(yīng)得稿費(扣稅前)為 元.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com