【題目】在平面直角坐標系中,曲線(為參數,實數),曲線(為參數,實數).在以為極點,軸的正半軸為極軸的極坐標系中,射線與交于,兩點,與交于,兩點.當時,;當時,.
(Ⅰ)求,的值及曲線 和極坐標方程;
(Ⅱ)求的最大值
【答案】(Ⅰ) 見解析 (Ⅱ)
【解析】
(I)根據平方法消去參數可得到曲線C1,的普通方程,再利用極坐標與直角坐標互化公式即可得出極坐標方程,進而得a和b的值.
(II)利用C1,C2的極坐標方程可得,利用二倍角公式和輔助角公式進行化簡,然后利用正弦函數圖像的性質即可得到最大值.
(Ⅰ)由曲線(為參數,實數),
化為普通方程為,展開為:,
其極坐標方程為,即,
由題意可得當時,,∴.
曲線極坐標方程為
曲線(為參數,實數),
化為普通方程為,展開可得極坐標方程為,
由題意可得當時,,∴.
曲線極坐標方程為
(Ⅱ)由(Ⅰ)可得,的極坐標方程分別為,.
∴
,
∵,
∴的最大值為,
當,時取到最大值.
科目:高中數學 來源: 題型:
【題目】據統(tǒng)計,僅在北京地區(qū)每天就有500萬單快遞等待派送,近5萬多名快遞員奔跑在一線,快遞網點人員流動性也較強,各快遞公司需要經常招聘快遞員,保證業(yè)務的正常開展.下面是50天內甲、乙兩家快遞公司的快遞員每天送貨單數統(tǒng)計表:
送貨單數 | 30 | 40 | 50 | 60 | |
天數 | 甲 | 10 | 10 | 20 | 10 |
乙 | 6 | 14 | 24 | 6 |
已知這兩家快遞公司的快遞員日工資方案分別為:甲公司規(guī)定底薪元,每單抽成元;乙公司規(guī)定底薪元,每日前單無抽成,超過單的部分每單抽成元.
(1)分別求甲、乙快遞公司的快遞員的日工資(單位:元)與送貨單數的函數關系式;
(2)小趙擬到甲、乙兩家快遞公司中的一家應聘快遞員的工作,如果僅從日收入的角度考慮,以這50天的送貨單數為樣本,將頻率視為概率,請你利用所學的統(tǒng)計學知識為他作出選擇,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率為,以橢圓的2個焦點與1個短軸端點為頂點的三角形的面積為2。
(1)求橢圓的方程;
(2)如圖,斜率為k的直線l過橢圓的右焦點F,且與橢圓交與A,B兩點,以線段AB為直徑的圓截直線x=1所得的弦的長度為,求直線l的方程。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本小題滿分12分)一個盒子里裝有三張卡片,分別標記有數字,,,這三張卡片除標記的數字外完全相同。隨機有放回地抽取次,每次抽取張,將抽取的卡片上的數字依次記為,,.
(Ⅰ)求“抽取的卡片上的數字滿足”的概率;
(Ⅱ)求“抽取的卡片上的數字,,不完全相同”的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中, 曲線的參數方程為為參數) ;在以原點為極點, 軸的正半軸為極軸的極坐標系中, 曲線的極坐標參數方程為.
(1)求曲線的極坐標方程和曲線的直角坐標方程;
(2)若射線與曲線,的交點分別為 (異于原點). 當斜率時, 求的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在某次數學考試中,小江的成績在90分以上的概率是0.25,在的概率是0.48,在的概率是0.11,在的概率是0.09,在60分以下的概率是0.07.計算:
(1)小江在此次數學考試中取得80分及以上的概率;
(2)小江考試及格(成績不低于60分)的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】函數f(x)=Asin(ωx+φ)(其中A>0,ω>0,|φ|<)的圖象如圖所示,為了得到g(x)=Acosωx的圖象,只需把y=f(x)的圖象上所有的點( )
A. 向右平移個單位長度 B. 向左平移個單位長度
C. 向右平移個單位長度 D. 向左平移個單位長度
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓過點,且其中一個焦點的坐標為.
(1)求橢圓的方程;
(2)過橢圓右焦點的直線與橢圓交于兩點,在軸上是否存在點,使得為定值?若存在,求出點的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com