已知向量
a
,
b
滿足|
a
|=1,
b
=(1,-
3
),且
a
⊥(
a
+
b
),則
a
b
的夾角為( 。
A、60°B、90°
C、120°D、150°
考點(diǎn):數(shù)量積表示兩個(gè)向量的夾角
專題:平面向量及應(yīng)用
分析:設(shè)
a
b
的夾角為θ,0°<θ<180°,由垂直可得數(shù)量積為0,可得cosθ,可得夾角.
解答: 解:設(shè)
a
b
的夾角為θ,0°<θ<180°
b
=(1,-
3
),∴|
b
|=2,
a
⊥(
a
+
b
),∴
a
•(
a
+
b
)=0,
a
2
+
a
b
=0,
∴12+1×2×cosθ=0,
解得cosθ=-
1
2
,
∴θ=120°
故選:C
點(diǎn)評(píng):本題考查向量的夾角公式,涉及數(shù)量積的運(yùn)算,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

執(zhí)行如圖所示程序框圖所表達(dá)的算法,若輸出的x值為48,則輸入的x值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)點(diǎn)M在曲線y=ex上,點(diǎn)N在曲線y=1-
1
x
(x>0)上,則|MN|的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)在(a,b)內(nèi)存在導(dǎo)數(shù),則f′(x)<0是f(x)在(a,b)內(nèi)單調(diào)遞減的
 
條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某校高二年級(jí)某班的數(shù)學(xué)課外活動(dòng)小組中有6名男生,4名女生,從中選出4人參加數(shù)學(xué)競(jìng)賽考試,則至少有2名男生參加數(shù)學(xué)競(jìng)賽的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=
log
1
3
(3x-2)
的定義域是(  )
A、[1,+∞)
B、(
2
3
,+∞)
C、(1,+∞)
D、(
2
3
,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)復(fù)數(shù)z滿足(z+i)(1+i)=1-i(i是虛數(shù)單位),則|z|=( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

i是虛數(shù)單位,則復(fù)數(shù)
2i
1-i
的虛部為(  )
A、-iB、-1C、1D、i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用反證法證明命題“三角形的內(nèi)角中至多有一個(gè)鈍角”時(shí),假設(shè)正確的是(  )
A、三個(gè)內(nèi)角中至少有一個(gè)鈍角
B、三個(gè)內(nèi)角中至少有兩個(gè)鈍角
C、三個(gè)內(nèi)角都不是鈍角
D、三個(gè)內(nèi)角都不是鈍角或至少有兩個(gè)鈍角

查看答案和解析>>

同步練習(xí)冊(cè)答案