已知:數(shù)列為:
1
1
2
1
,
1
2
3
1
,
2
2
,
1
3
,
4
1
,
3
2
,
2
3
,
1
4
…則a2012=
5
59
5
59
分析:將題中數(shù)列按“三角形數(shù)陣”排列,發(fā)現(xiàn)第一行有1個(gè)數(shù),第二行有2個(gè)數(shù),第三行有3個(gè)數(shù),依此類(lèi)推第k行有k個(gè)數(shù).因此,解不等式1+2+…+k≥2012,找到滿足條件的最小正整數(shù)63,說(shuō)明a2012在第63行,再根據(jù)第63行第63個(gè)數(shù)得到a2012是63行第59個(gè)數(shù),最后根據(jù)已知數(shù)列的排列規(guī)律,得到a2012的值.
解答:解:將題中數(shù)列按“三角形數(shù)陣”排列,得
1
1

2
1
,
1
2

3
1
,
2
2
,
1
3

4
1
,
3
2
,
2
3
,
1
4


由此得到第k行的排列:
k
1
,
k-1
2
k-2
3
,…,
2
k-1
,
1
k
 (k∈Z)
假設(shè)a2012在第k行,則k是滿足1+2+…+k≥2012的最小正整數(shù)
k(k+1)
2
≥2012,可得滿足條件的最小正整數(shù)k=63
∴a2012在第63行,并且a
k(k+1)
2
=a2016
=
1
63
是63行的第63個(gè)數(shù),
因此,a2012是63行的倒數(shù)第5個(gè),也是第59個(gè)數(shù),可得a2012=
5
59

故答案為:
5
59
點(diǎn)評(píng):本題給出一個(gè)特殊數(shù)列,要求我們發(fā)現(xiàn)其中規(guī)律并寫(xiě)出該數(shù)列的第2012項(xiàng),著重考查了等差數(shù)列的通項(xiàng)與求和、歸納推理的一般方法等知識(shí),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

20、若有窮數(shù)列a1,a2…an(n是正整數(shù)),滿足a1=an,a2=an-1…an=a1即ai=an-i+1
(i是正整數(shù),且1≤i≤n),就稱該數(shù)列為“對(duì)稱數(shù)列”.
(1)已知數(shù)列{bn}是項(xiàng)數(shù)為7的對(duì)稱數(shù)列,且b1,b2,b3,b4成等差數(shù)列,b1=2,b4=11,試寫(xiě)出{bn}的每一項(xiàng)
(2)已知{cn}是項(xiàng)數(shù)為2k-1(k≥1)的對(duì)稱數(shù)列,且ck,ck+1…c2k-1構(gòu)成首項(xiàng)為50,公差為-4的等差數(shù)列,數(shù)列{cn}的前2k-1項(xiàng)和為S2k-1,則當(dāng)k為何值時(shí),S2k-1取到最大值?最大值為多少?
(3)對(duì)于給定的正整數(shù)m>1,試寫(xiě)出所有項(xiàng)數(shù)不超過(guò)2m的對(duì)稱數(shù)列,使得1,2,22…2m-1成為數(shù)列中的連續(xù)項(xiàng);當(dāng)m>1500時(shí),試求其中一個(gè)數(shù)列的前2008項(xiàng)和S2008

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:上海高考真題 題型:解答題

若有窮數(shù)列a1,a2,…,an(n是正整數(shù)),滿足a1=an,a2=an-1,…,an=a1即ai=an-i+1(i是正整數(shù),且1≤i≤n),就稱該數(shù)列為“對(duì)稱數(shù)列”。
(1)已知數(shù)列{bn}是項(xiàng)數(shù)為7的對(duì)稱數(shù)列,且b1,b2,b3,b4成等差數(shù)列,b1=2,b4=11,試寫(xiě)出{bn}的每一項(xiàng);
(2)已知{cn}是項(xiàng)數(shù)為2k-1(k≥1)的對(duì)稱數(shù)列,且ck,ck+1,…,c2k-1構(gòu)成首項(xiàng)為50,公差為-4的等差數(shù)列,數(shù)列{cn}的前2k-1項(xiàng)和為S2k-1,則當(dāng)k為何值時(shí),S2k-1取到最大值?最大值為多少?
(3)對(duì)于給定的正整數(shù)m>1,試寫(xiě)出所有項(xiàng)數(shù)不超過(guò)2m的對(duì)稱數(shù)列,使得1,2,22,…,2m-1成為數(shù)列中的連續(xù)項(xiàng);當(dāng)m>1500時(shí),試求其中一個(gè)數(shù)列的前2008項(xiàng)和S2008。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2007-2008學(xué)年山東省臨沂市臨沭一中高二(上)月考數(shù)學(xué)試卷(解析版) 題型:解答題

若有窮數(shù)列a1,a2…an(n是正整數(shù)),滿足a1=an,a2=an-1…an=a1即ai=an-i+1
(i是正整數(shù),且1≤i≤n),就稱該數(shù)列為“對(duì)稱數(shù)列”.
(1)已知數(shù)列{bn}是項(xiàng)數(shù)為7的對(duì)稱數(shù)列,且b1,b2,b3,b4成等差數(shù)列,b1=2,b4=11,試寫(xiě)出{bn}的每一項(xiàng)
(2)已知{cn}是項(xiàng)數(shù)為2k-1(k≥1)的對(duì)稱數(shù)列,且ck,ck+1…c2k-1構(gòu)成首項(xiàng)為50,公差為-4的等差數(shù)列,數(shù)列{cn}的前2k-1項(xiàng)和為S2k-1,則當(dāng)k為何值時(shí),S2k-1取到最大值?最大值為多少?
(3)對(duì)于給定的正整數(shù)m>1,試寫(xiě)出所有項(xiàng)數(shù)不超過(guò)2m的對(duì)稱數(shù)列,使得1,2,22…2m-1成為數(shù)列中的連續(xù)項(xiàng);當(dāng)m>1500時(shí),試求其中一個(gè)數(shù)列的前2008項(xiàng)和S2008

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年江蘇省無(wú)錫市江陰市成化高級(jí)中學(xué)高考數(shù)學(xué)模擬試卷(18)(解析版) 題型:解答題

若有窮數(shù)列a1,a2…an(n是正整數(shù)),滿足a1=an,a2=an-1…an=a1即ai=an-i+1
(i是正整數(shù),且1≤i≤n),就稱該數(shù)列為“對(duì)稱數(shù)列”.
(1)已知數(shù)列{bn}是項(xiàng)數(shù)為7的對(duì)稱數(shù)列,且b1,b2,b3,b4成等差數(shù)列,b1=2,b4=11,試寫(xiě)出{bn}的每一項(xiàng)
(2)已知{cn}是項(xiàng)數(shù)為2k-1(k≥1)的對(duì)稱數(shù)列,且ck,ck+1…c2k-1構(gòu)成首項(xiàng)為50,公差為-4的等差數(shù)列,數(shù)列{cn}的前2k-1項(xiàng)和為S2k-1,則當(dāng)k為何值時(shí),S2k-1取到最大值?最大值為多少?
(3)對(duì)于給定的正整數(shù)m>1,試寫(xiě)出所有項(xiàng)數(shù)不超過(guò)2m的對(duì)稱數(shù)列,使得1,2,22…2m-1成為數(shù)列中的連續(xù)項(xiàng);當(dāng)m>1500時(shí),試求其中一個(gè)數(shù)列的前2008項(xiàng)和S2008

查看答案和解析>>

同步練習(xí)冊(cè)答案