20、若有窮數(shù)列a1,a2…an(n是正整數(shù)),滿足a1=an,a2=an-1…an=a1即ai=an-i+1
(i是正整數(shù),且1≤i≤n),就稱該數(shù)列為“對稱數(shù)列”.
(1)已知數(shù)列{bn}是項數(shù)為7的對稱數(shù)列,且b1,b2,b3,b4成等差數(shù)列,b1=2,b4=11,試寫出{bn}的每一項
(2)已知{cn}是項數(shù)為2k-1(k≥1)的對稱數(shù)列,且ck,ck+1…c2k-1構成首項為50,公差為-4的等差數(shù)列,數(shù)列{cn}的前2k-1項和為S2k-1,則當k為何值時,S2k-1取到最大值?最大值為多少?
(3)對于給定的正整數(shù)m>1,試寫出所有項數(shù)不超過2m的對稱數(shù)列,使得1,2,22…2m-1成為數(shù)列中的連續(xù)項;當m>1500時,試求其中一個數(shù)列的前2008項和S2008
分析:(1)設{bn}的公差為d,由b1,b2,b3,b4成等差數(shù)列求解d從而求得數(shù)列{bn},
(2)先得到S2k-1=-4(k-13)2+4×132-50,用二次函數(shù)求解,
(3)按照1,2,22…2m-1是數(shù)列中的連續(xù)項按照定義,用組合的方式寫出來所有可能的數(shù)列,再按其數(shù)列的規(guī)律求前n項和取符合條件的一組即可.
解答:解:(1)設{bn}的公差為d,則b4=b1+3d=2+3d=11,解得d=3,∴?數(shù)列{bn}為2,5,8,11,8,5,2.
(2)S2k-1=c1+c2++ck-1+ck+ck+1++c2k-1=2(ck+ck+1++c2k-1)-ck,
S2k-1=-4(k-13)2+4×132-50,
∴?當k=13時,S2k-1取得最大值.S2k-1的最大值為626.
(3)所有可能的“對稱數(shù)列”是:
①1,2,22,,2m-2,2m-1,2m-2,,22,2,1;
②1,2,22,,2m-2,2m-1,2m-1,2m-2,,22,2,1;
③2m-1,2m-2,,22,2,1,2,22,,2m-2,2m-1;
④2m-1,2m-2,,22,2,1,1,2,22,,2m-2,2m-1
對于①,當m≥2008時,S2008=1+2+22++22007=22008-1.
當1500<m≤2007時,S2008=1+2++2m-2+2m-1+2m-2++22m-2009=2m-1+2m-1-22m-2009=2m+2m-1-22m-2009-1.
對于②,當m≥2008時,S2008=22008-1.
當1500<m≤2007時,S2008=2m+1-22m-2008-1.
對于③,當m≥2008時,S2008=2m-2m-2008
當1500<m≤2007時,S2008=2m+22009-m-3.
對于④,當m≥2008時,S2008=2m-2m-2008
當1500<m≤2007時,S2008=2m+22008-m-2.
點評:本題一道新定義題,這樣的題做法是嚴格按照定義要求,將其轉化為已知的知識和方法去解決,本題涉及到等差數(shù)列的通項公式,等比數(shù)列求和,構造數(shù)列等知識.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

若有窮數(shù)列a1,a2,a3,…,an(n是正整數(shù)),滿足a1=an,a2=an-1,…,an=a1即ai=an-i+1(i是正整數(shù),且1≤i≤n),就稱該數(shù)列為“對稱數(shù)列”.例如:數(shù)列1,2,3,3,2,1和數(shù)列1,2,3,4,3,2,1都為“對稱數(shù)列”.已知數(shù)列{bn}是項數(shù)不超過2m(m>1,m∈N*)的對稱數(shù)列,使得1,2,22…2m-1成為數(shù)列中連續(xù)的前m項,則數(shù)列{bn}的前2013項和S2013所有可能的取值的序號為( 。
①22013-1
②2(22013-1)
③2m+1-22m-2013-1
④3•2m-1-22m-2014-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若有窮數(shù)列a1,a2…an(n是正整數(shù)),滿足a1=an,a2=an-1,…,an=a1即ai=an-i+1(i是正整數(shù),且1≤i≤n),就稱該數(shù)列為“對稱數(shù)列”.已知數(shù)列{bn}是項數(shù)為7的對稱數(shù)列,且b1,b2,b3,b4成等差數(shù)列,b1=2,b4=11試寫出{bn}所有項
2,5,8,11,8,5,2
2,5,8,11,8,5,2

查看答案和解析>>

科目:高中數(shù)學 來源:上海高考真題 題型:解答題

若有窮數(shù)列a1,a2,…,an(n是正整數(shù)),滿足a1=an,a2=an-1,…,an=a1即ai=an-i+1(i是正整數(shù),且1≤i≤n),就稱該數(shù)列為“對稱數(shù)列”。
(1)已知數(shù)列{bn}是項數(shù)為7的對稱數(shù)列,且b1,b2,b3,b4成等差數(shù)列,b1=2,b4=11,試寫出{bn}的每一項;
(2)已知{cn}是項數(shù)為2k-1(k≥1)的對稱數(shù)列,且ck,ck+1,…,c2k-1構成首項為50,公差為-4的等差數(shù)列,數(shù)列{cn}的前2k-1項和為S2k-1,則當k為何值時,S2k-1取到最大值?最大值為多少?
(3)對于給定的正整數(shù)m>1,試寫出所有項數(shù)不超過2m的對稱數(shù)列,使得1,2,22,…,2m-1成為數(shù)列中的連續(xù)項;當m>1500時,試求其中一個數(shù)列的前2008項和S2008。

查看答案和解析>>

科目:高中數(shù)學 來源:2010年江蘇省無錫市江陰市成化高級中學高考數(shù)學模擬試卷(18)(解析版) 題型:解答題

若有窮數(shù)列a1,a2…an(n是正整數(shù)),滿足a1=an,a2=an-1…an=a1即ai=an-i+1
(i是正整數(shù),且1≤i≤n),就稱該數(shù)列為“對稱數(shù)列”.
(1)已知數(shù)列{bn}是項數(shù)為7的對稱數(shù)列,且b1,b2,b3,b4成等差數(shù)列,b1=2,b4=11,試寫出{bn}的每一項
(2)已知{cn}是項數(shù)為2k-1(k≥1)的對稱數(shù)列,且ck,ck+1…c2k-1構成首項為50,公差為-4的等差數(shù)列,數(shù)列{cn}的前2k-1項和為S2k-1,則當k為何值時,S2k-1取到最大值?最大值為多少?
(3)對于給定的正整數(shù)m>1,試寫出所有項數(shù)不超過2m的對稱數(shù)列,使得1,2,22…2m-1成為數(shù)列中的連續(xù)項;當m>1500時,試求其中一個數(shù)列的前2008項和S2008

查看答案和解析>>

同步練習冊答案