【題目】已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)存在極小值點(diǎn),且,求實(shí)數(shù)的取值范圍.
【答案】(Ⅰ)當(dāng)時(shí),函數(shù)的單調(diào)遞減區(qū)間為;當(dāng)時(shí),函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為;(Ⅱ) .
【解析】試題分析:(Ⅰ)求出, 分兩種情況分別令得增區(qū)間, 得減區(qū)間;(Ⅱ)函數(shù)存在極小值點(diǎn),所以在上存在兩個(gè)零點(diǎn), ,設(shè)為函數(shù)的極小值點(diǎn),由,得,所以可得結(jié)果.
試題解析:(Ⅰ)因?yàn)楹瘮?shù),所以其定義域?yàn)?/span>.
所以 .
當(dāng)時(shí), ,函數(shù)在區(qū)間上單調(diào)遞減.
當(dāng)時(shí), .
當(dāng)時(shí), ,函數(shù)在區(qū)間上單調(diào)遞減.
當(dāng)時(shí), ,函數(shù)在區(qū)間上單調(diào)遞增.
綜上可知,當(dāng)時(shí),函數(shù)的單調(diào)遞減區(qū)間為;當(dāng)時(shí),函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.
(Ⅱ)因?yàn)?/span> ,
所以 ().
因?yàn)楹瘮?shù)存在極小值點(diǎn),所以在上存在兩個(gè)零點(diǎn), ,且.
即方程的兩個(gè)根為, ,且,
所以,解得.
則 .
當(dāng)或時(shí), ,當(dāng)時(shí), ,
所以函數(shù)的單調(diào)遞減區(qū)間為與,單調(diào)遞增區(qū)間為.
所以為函數(shù)的極小值點(diǎn).
由,得.
由于等價(jià)于.
由,得,所以.
因?yàn)?/span>,所以有,即.
因?yàn)?/span>,所以.
解得.
所以實(shí)數(shù)的取值范圍為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和Sn=3n+m(m為常數(shù),n∈N+)
(1)求a1 , a2 , a3;
(2)若數(shù)列{an}為等比數(shù)列,求常數(shù)m的值及an;
(3)對(duì)于(2)中的an , 記f(n)=λa2n+1﹣4λan+1﹣7,若f(n)<0對(duì)任意的正整數(shù)n恒成立,求實(shí)數(shù)λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓心在軸上的圓與直線切于點(diǎn).
(1)求圓的標(biāo)準(zhǔn)方程;
(2)已知,經(jīng)過原點(diǎn),且斜率為正數(shù)的直線與圓交于兩點(diǎn).
(。┣笞C: 為定值;
(ⅱ)求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是一段圓錐曲線,曲線與兩個(gè)坐標(biāo)軸的交點(diǎn)分別是, , .
(Ⅰ)若該曲線表示一個(gè)橢圓,設(shè)直線過點(diǎn)且斜率是,求直線與這個(gè)橢圓的公共點(diǎn)的坐標(biāo).
(Ⅱ)若該曲線表示一段拋物線,求該拋物線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為: ,直線的參數(shù)方程是(為參數(shù), ).
(1)求曲線的直角坐標(biāo)方程;
(2)設(shè)直線與曲線交于兩點(diǎn),且線段的中點(diǎn)為,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)數(shù)學(xué)老師分別用兩種不同教學(xué)方式對(duì)入學(xué)數(shù)學(xué)平均分和優(yōu)秀率都相同的甲、乙兩個(gè)高一新班(人數(shù)均為20人)進(jìn)行教學(xué)(兩班的學(xué)生學(xué)習(xí)數(shù)學(xué)勤奮程度和自覺性一致),數(shù)學(xué)期終考試成績(jī)莖葉圖如下:
(1)學(xué)校規(guī)定:成績(jī)不低于75分的為優(yōu)秀,請(qǐng)?zhí)顚懴旅娴?/span>聯(lián)表,并判斷有多大把握認(rèn)為“成績(jī)優(yōu)秀與教學(xué)方式有關(guān)”.
附:參考公式及數(shù)據(jù)
(2)從兩個(gè)班數(shù)學(xué)成績(jī)不低于90分的同學(xué)中隨機(jī)抽取3名,設(shè)為抽取成績(jī)不低于95分同學(xué)人數(shù),求的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某網(wǎng)站針對(duì)2015年中國(guó)好聲音歌手A,B,C三人進(jìn)行網(wǎng)上投票,結(jié)果如下
觀眾年齡 | 支持A | 支持B | 支持C |
20歲以下 | 100 | 200 | 600 |
20歲以上(含20歲) | 100 | 100 | 400 |
(1)在所有參與該活動(dòng)的人中,用分層抽樣的方法抽取n人,其中有6人支持A,求n的值.
(2)在支持C的人中,用分層抽樣的方法抽取5人作為一個(gè)總體,從這5人中任意選取2人,求恰有1人在20歲以下的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平面內(nèi)有向量 =(1,7), =(5,1), =(2,1),點(diǎn)X為直線OP上的一個(gè)動(dòng)點(diǎn).
(1)當(dāng) 取最小值時(shí),求 的坐標(biāo);
(2)當(dāng)點(diǎn)X滿足(1)的條件和結(jié)論時(shí),求cos∠AXB的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com