【題目】已知橢圓 的一個焦點與拋物線的焦點相同 為橢圓的左右焦點 為橢圓上任意一點, 面積的最大值為1

(1)求橢圓的方程

(2)直線交橢圓兩點.若直線的斜率分別為,.求證:直線過定點,并求出該定點的坐標

【答案】(1);(2

【解析】試題分析:1)由拋物線的焦點為可以得到橢圓的半焦距,而的面積的最大值為,利用算出,從而,橢圓方程為(2)先設(shè)出和直線的方程 ,把轉(zhuǎn)化為,故聯(lián)立方程組消去再利用韋達定理把這個關(guān)于的關(guān)系式化簡為,所以直線 恒過定點該定點坐標為

解析:

(1)由拋物線的方程得其焦點為所以橢圓中當點為橢圓的短軸端點時, 面積最大,此時,所以,所以橢圓的方程為

(2)聯(lián)立 ,

設(shè),,又,整理得,即

,化簡得,所以直線的方程為,因此直線 恒過定點該定點坐標為

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)離心率為 的橢圓E: + =1(a>b>0)的左、右焦點為F1 , F2 , 點P是E上一點,PF1⊥PF2 , △PF1F2內(nèi)切圓的半徑為 ﹣1.
(1)求E的方程;
(2)矩形ABCD的兩頂點C、D在直線y=x+2,A、B在橢圓E上,若矩形ABCD的周長為 ,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的中心在坐標原點,焦點在軸上,橢圓上的點到焦點距離的最大值為3,最小值為1.

(1)求橢圓的標準方程;

(2)若直線 與橢圓相交于, 兩點(, 不是左右頂點),且以為直徑的圓過橢圓的右頂點.求證:直線過定點,并求出該定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】全國大學生機器人大賽是由共青團中央,全國學聯(lián),深圳市人民政府聯(lián)合主辦的賽事,是中國最具影響力的機器人項目,是全球獨創(chuàng)的機器人競技平臺.全國大學生機器人大賽比拼的是參賽選手們的能力,堅持和態(tài)度,展現(xiàn)的是個人實力以及整個團隊的力量.2015賽季共吸引全國240余支機器人戰(zhàn)隊踴躍報名,這些參賽戰(zhàn)隊來自全國六大賽區(qū),150余所高等院校,其中不乏北京大學,清華大學,上海交大,中國科大,西安交大等眾多國內(nèi)頂尖高校,經(jīng)過嚴格篩選,最終由111支機器人戰(zhàn)隊參與到2015年全國大學生機器人大賽的激烈角逐之中,某大學共有“機器人”興趣團隊1000個,大一、大二、大三、大四分別有100,200,300,400個,為挑選優(yōu)秀團隊,現(xiàn)用分層抽樣的方法,從以上團隊中抽取20個團隊.

(1)應從大三抽取多少個團隊?

(2)將20個團隊分為甲、乙兩組,每組10個團隊,進行理論和實踐操作考試(共150分),甲、乙兩組的分數(shù)如下:

甲:125,141,140,137,122,114,119,139,121,142

乙:127,116,144,127,144,116,140,140,116,140

從甲、乙兩組中選一組強化訓練,備戰(zhàn)機器人大賽.從統(tǒng)計學數(shù)據(jù)看,若選擇甲組,理由是什么?若選擇乙組,理由是什么?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,三棱錐ABCD中,AB⊥平面BCD,CD⊥BD .

1)求證:CD⊥平面ABD;

2)若ABBDCD1,MAD中點,求三棱錐AMBC的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】拋物線x2=ay(a>0)的準線l與y軸交于點P,若l繞點P以每秒 弧度的角速度按逆時針方向旋轉(zhuǎn)t秒鐘后,恰與拋物線第一次相切,則t等于(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)點M到坐標原點的距離和它到直線l:x=﹣m(m>0)的距離之比是一個常數(shù)
(Ⅰ)求點M的軌跡;
(Ⅱ)若m=1時得到的曲線是C,將曲線C向左平移一個單位長度后得到曲線E,過點P(﹣2,0)的直線l1與曲線E交于不同的兩點A(x1 , y1),B(x2 , y2),過F(1,0)的直線AF、BF分別交曲線E于點D、Q,設(shè) ,α、β∈R,求α+β的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)在區(qū)間上的圖像如圖所示,將該函數(shù)圖像上各點的橫坐標縮短到原來的一半(縱坐標不變,再向右平移個單位長度后,所得到的圖像關(guān)于直線對稱,則的最小值為(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓過點,離心率為.

(1)求橢圓的標準方程;

2)過橢圓的上頂點作直線交拋物線兩點, 為原點.

①求證:

②設(shè)、分別與橢圓相交于、兩點,過原點作直線的垂線,垂足為,證明: 為定值.

查看答案和解析>>

同步練習冊答案