【題目】已知定義在[e,+∞)上的函數(shù)f(x)滿足f(x)+xlnxf′(x)<0且f(2018)=0,其中f′(x)是函數(shù)的導(dǎo)函數(shù),e是自然對數(shù)的底數(shù),則不等式f(x)>0的解集為( 。
A. [e,2018) B. [2018,+∞) C. (e,+∞) D. [e,e+1)
【答案】A
【解析】
由已知條件構(gòu)造輔助函數(shù)g(x)=f(x)lnx,求導(dǎo),根據(jù)已知求得函數(shù)的單調(diào)區(qū)間,結(jié)合原函數(shù)的性質(zhì)和函數(shù)值,即可f(x)>0的解集.
∵定義在[e,+∞)上的函數(shù)f(x)滿足f(x)+xlnxf′(x)<0,
設(shè)g(x)=f(x)lnx,
∴g′(x)=f′(x)lnx0在[e,+∞)恒成立,
∴g(x)在[e,+∞)單調(diào)遞減,
∵f(2018)=0
∴g(2018)=f(2018)ln2018=0,
要求f(x)>0,lnx>0,只需g(x)>0即可.∵
∴g(x)>0=g(2018),
∴x<2018,
∴e≤x<2018,
故選:A.
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓過點,離心率為,為坐標原點.
(1)求橢圓的標準方程;
(2)設(shè),,為橢圓上的三點,與交于點,且,當的中點恰為點時,判斷的面積是否為常數(shù),并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,甲船在A處,乙船在A處的南偏東45°方向,距A有9海里的B處,并以20海里每小時的速度沿南偏西15°方向行駛,若甲船沿南偏東θ度的方向,并以28海里每小時的速度行駛,恰能在C處追上乙船.問用多少小時追上乙船,并求sin θ的值.(結(jié)果保留根號,無需求近似值)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,以坐標原點為中心,以坐標軸為對稱軸的幫圓C經(jīng)過點M(2,1),N.
(1)求橢圓C的標準方程;
(2)經(jīng)過點M作傾斜角互補的兩條直線,分別與橢圓C相交于異于M點的A,B兩點,當△AMB面積取得最大值時,求直線AB的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲、乙兩名籃球運動員,甲投籃一次命中的概率為,乙投籃一次命中的概率為,若甲、乙各投籃三次,設(shè)為甲、乙投籃命中的次數(shù)的差的絕對值,其中甲、乙兩人投籃是否命中相互沒有影響.
(1)若甲、乙第一次投籃都命中,求甲獲勝(甲投籃命中數(shù)比乙多)的概率;
(2)求的分布列及數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知等差數(shù)列的公差不為零,且,、、成等比數(shù)列,數(shù)列滿足
(1)求數(shù)列、的通項公式;
(2)求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定義空間點到幾何圖形的距離為:這一點到這個幾何圖形上各點距離中最短距離.
(1)在空間,求與定點距離等于1的點所圍成的幾何體的體積和表面積;
(2)在空間,線段(包括端點)的長等于1,求到線段的距離等于1的點所圍成的幾何體的體積和表面積;
(3)在空間,記邊長為1的正方形區(qū)域(包括邊界及內(nèi)部的點)為,求到距離等于1的點所圍成的幾何體的體積和表面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某商場一年中各月份的收入、支出情況的統(tǒng)計如圖所示,下列說法中正確的是______.
①2至3月份的收入的變化率與11至12月份的收入的變化率相同;
②支出最高值與支出最低值的比是6:1;
③第三季度平均收入為50萬元;
④利潤最高的月份是2月份。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com