【題目】已知橢圓的離心率為,、分別為左、右頂點(diǎn),為其右焦點(diǎn),是橢圓上異于、的動(dòng)點(diǎn),且的最小值為-2.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若過左焦點(diǎn)的直線交橢圓于兩點(diǎn),求的取值范圍.
【答案】(1);(2).
【解析】
試題分析:(1)由橢圓的離心率得到的關(guān)系,再由的最小值為求得的值,則可求,橢圓方程可求;(2)由(1)知,則斜率不存在時(shí),用坐標(biāo)分別表示出,直接求得;直線斜率存在時(shí),設(shè)直線的方程為,代入橢圓方程,消去得,利用根與系數(shù)的關(guān)系求得的橫坐標(biāo)的積,把轉(zhuǎn)化為的橫坐標(biāo)的和與積的形式,代入后化為關(guān)于的函數(shù)式得答案.
試題解析:(1)根據(jù)題意知,即,
∴,則,
設(shè),
∵,
,
∵,∴當(dāng)時(shí),,
∴,則.
∴橢圓的方程為.
(2)由,,得,
∴,,
則直線斜率不存在時(shí),
,,于是,.
直線斜率存在時(shí),設(shè)直線的方程為,代入橢圓方程,消去得
,
設(shè),,則,,
∵,,
∴
.
∵,∴.
∴.
綜上知,.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)據(jù),,,…,是杭州市100個(gè)普通職工的2016年10月份的收入(均不超過2萬元),設(shè)這100個(gè)數(shù)據(jù)的中位數(shù)為,平均數(shù)為,方差為,如果再加上馬云2016年10月份的收入(約100億元),則相對(duì)于、、,這101個(gè)月收入數(shù)據(jù)( )
A. 平均數(shù)可能不變,中位數(shù)可能不變,方差可能不變
B. 平均數(shù)大大增大,中位數(shù)可能不變,方差也不變
C. 平均數(shù)大大增大,中位數(shù)一定變大,方差可能不變
D. 平均數(shù)大大增大,中位數(shù)可能不變,方差變大
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,側(cè)棱,底面為直角梯形,其中,.
(1)求證:側(cè)面PAD⊥底面ABCD;
(2)求三棱錐的表面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一次籃球定點(diǎn)投籃訓(xùn)練中,規(guī)定每人最多投3次,在處每投進(jìn)一球得3分;在處每投進(jìn)一球得2分.如果前兩次得分之和超過3分就停止投籃;否則投第三次.某同學(xué)在處的投中率,在處的投中率為,該同學(xué)選擇先在處投第一球,以后都在處投,且每次投籃都互不影響,用表示該同學(xué)投籃訓(xùn)練結(jié)束后所得的總分,其分布列為:
0 | 2 | 3 | 4 | 5 | |
0.03 |
(1)求的值;
(2)求隨機(jī)變量的數(shù)學(xué)期望;
(3)試比較該同學(xué)選擇上述方式投籃得分超過3分與選擇都在處投籃得分超過3分的概率的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),且.
(1)若函數(shù)在區(qū)間上是減函數(shù),求實(shí)數(shù)的取值范圍;
(2)設(shè)函數(shù),當(dāng)時(shí), 恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)
某班甲、乙兩名同學(xué)參加l00米達(dá)標(biāo)訓(xùn)練,在相同條件下兩人l0次訓(xùn)練的成績(單位:秒)如下:
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
甲 | 11.6 | 12.2 | 13.2 | 13.9 | 14.0 | 11.5 | 13.1 | 14.5 | 11.7 | 14.3 |
乙 | 12.3 | 13.3 | 14.3 | 11.7 | 12.0 | 12.8 | 13.2 | 13.8 | 14.1 | 12.5 |
(I)請(qǐng)作出樣本數(shù)據(jù)的莖葉圖;如果從甲、乙兩名同學(xué)中選一名參加學(xué)校的100米比賽,從成績的穩(wěn)定性方面考慮,選派誰參加比賽更好,并說明理由(不用計(jì)算,可通過統(tǒng)計(jì)圖直接回答結(jié)論).
(Ⅱ)從甲、乙兩人的10次訓(xùn)練成績中各隨機(jī)抽取一次,求抽取的成績中至少有一個(gè)比12.8秒差的概率.
(Ⅲ)經(jīng)過對(duì)甲、乙兩位同學(xué)的多次成績的統(tǒng)計(jì),甲、乙的成績都均勻分布在[11.5,14.5]
之間,現(xiàn)甲、乙比賽一次,求甲、乙成績之差的絕對(duì)值小于0.8秒的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在矩形中,,點(diǎn)是的中點(diǎn),將沿折起到的位置,使二面角是直二面角.
(1)證明: ;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)().
(1)當(dāng)時(shí),討論函數(shù)的單調(diào)性;
(2)設(shè),當(dāng)時(shí),若對(duì)任意,存在,使,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com