【題目】學(xué)校藝術(shù)節(jié)對(duì)同一類的四項(xiàng)參賽作品,只評(píng)一項(xiàng)一等獎(jiǎng),在評(píng)獎(jiǎng)揭曉前,甲、乙、丙、丁四位同學(xué)對(duì)這四項(xiàng)參賽作品預(yù)測(cè)如下:
甲說(shuō):“或作品獲得一等獎(jiǎng)”;
乙說(shuō):“作品獲得一等獎(jiǎng)”;
丙說(shuō):“, 兩項(xiàng)作品未獲得一等獎(jiǎng)”;
丁說(shuō):“作品獲得一等獎(jiǎng)”.
若這四位同學(xué)只有兩位說(shuō)的話是對(duì)的,則獲得一等獎(jiǎng)的作品是( )
A. B. C. D.
【答案】B
【解析】因?yàn)閷?duì)同一類的四項(xiàng)參賽作品,只評(píng)一項(xiàng)一等獎(jiǎng).
對(duì)于選項(xiàng)A,若作品獲得一等獎(jiǎng),則四人說(shuō)法都錯(cuò)誤,不符合題意.
對(duì)于選項(xiàng)B,若作品獲得一等獎(jiǎng),則甲、丁人說(shuō)法都錯(cuò)誤,乙丙說(shuō)法正確,符合題意.
對(duì)于選項(xiàng)C,若作品獲得一等獎(jiǎng),乙說(shuō)法錯(cuò)誤,其余三人說(shuō)法正確,不符合題意.
對(duì)于選項(xiàng)D,若作品獲得一等獎(jiǎng),則乙丙丁人說(shuō)法都錯(cuò)誤,不符合題意.
綜上可得作品獲得一等獎(jiǎng).選B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一次珠寶展覽會(huì)上,某商家展出一套珠寶首飾,第1件首飾是1顆珠寶,第2件首飾是由6顆珠寶構(gòu)成的如圖1所示的正六邊形,第3件首飾是由15顆珠寶構(gòu)成的如圖2所示的正六邊形,第4件首飾是由28顆珠寶構(gòu)成的如圖3所示的正六邊形,第5件首飾是由45顆珠寶構(gòu)成的如圖4所示的正六邊形,以后每件首飾都在前一件的基礎(chǔ)上,按照這種規(guī)律增加一定數(shù)量的珠寶,使它構(gòu)成更大的正六邊形,依此推斷:
(1)第6件首飾上應(yīng)有________顆珠寶;
(2)前n(n∈N*)件首飾所用珠寶總顆數(shù)為________.(結(jié)果用n表示)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線C:y2=4x和直線l:x=-1.
(1)若曲線C上存在一點(diǎn)Q,它到l的距離與到坐標(biāo)原點(diǎn)O的距離相等,求Q點(diǎn)的坐標(biāo);
(2)過(guò)直線l上任一點(diǎn)P作拋物線的兩條切線,切點(diǎn)記為A,B,求證:直線AB過(guò)定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸,建立極坐標(biāo)系,已知直線的參數(shù)方程為 (為參數(shù)),曲線的極坐標(biāo)方程是.
(1)寫(xiě)出直線的普通方程和曲線的直角坐標(biāo)方程;
(2)設(shè)直線與曲線相交于兩點(diǎn),點(diǎn)為的中點(diǎn),點(diǎn)的極坐標(biāo)為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某項(xiàng)競(jìng)賽分為初賽、復(fù)賽、決賽三個(gè)階段進(jìn)行,每個(gè)階段選手要回答一個(gè)問(wèn)題.規(guī)定正確回答問(wèn)題者進(jìn)入下一階段競(jìng)賽,否則即遭淘汰.已知某選手通過(guò)初賽、復(fù)賽、決賽的概率分別是且各階段通過(guò)與否相互獨(dú)立.
(1)求該選手在復(fù)賽階段被淘汰的概率;
(2)設(shè)該選手在競(jìng)賽中回答問(wèn)題的個(gè)數(shù)為ξ,求ξ的分布列與均值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1 ,在△ABC中,AB=BC=2, ∠B=90°,D為BC邊上一點(diǎn),以邊AC為對(duì)角線做平行四邊形ADCE,沿AC將△ACE折起,使得平面ACE ⊥平面ABC,如圖2.
(1)在圖 2中,設(shè)M為AC的中點(diǎn),求證:BM丄AE;
(2)在圖2中,當(dāng)DE最小時(shí),求二面角A -DE-C的平面角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(I)若曲線存在斜率為-1的切線,求實(shí)數(shù)a的取值范圍;
(II)求的單調(diào)區(qū)間;
(III)設(shè)函數(shù),求證:當(dāng)時(shí), 在上存在極小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)A(-2,0),B(2,0),曲線C上的動(dòng)點(diǎn)P滿足.
(1)求曲線C的方程;
(2)若過(guò)定點(diǎn)M(0,-2)的直線l與曲線C有公共點(diǎn),求直線l的斜率k的取值范圍;
(3)若動(dòng)點(diǎn)Q(x,y)在曲線C上,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為 (t為參數(shù)),若以該直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρsin2θ-4cos θ=0.
(1)求直線l與曲線C的普通方程;
(2)已知直線l與曲線C交于A,B兩點(diǎn),設(shè)M(2,0),求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com