【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸,建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為.

(1)求直線的普通方程與曲線的直角坐標(biāo)方程;

(2)設(shè)點(diǎn),直線與曲線交于不同的兩點(diǎn)、,求的值.

【答案】(1)直線的普通方程為,曲線的直角坐標(biāo)方程;(2)

【解析】

1)可通過(guò)直線的參數(shù)方程求出直線的普通方程,然后使用極坐標(biāo)與直角坐標(biāo)之間的相互轉(zhuǎn)化求出曲線的直角坐標(biāo)方程;

2)首先可根據(jù)直線的傾斜角以及點(diǎn)坐標(biāo)設(shè)出直線的參數(shù)方程,然后將其帶入曲線的方程中并求出的值,最后根據(jù)參數(shù)的幾何意義求出

(1)直線的普通方程為,即,

根據(jù)極坐標(biāo)與直角坐標(biāo)之間的相互轉(zhuǎn)化,,

,則,即

故直線的普通方程為,曲線的直角坐標(biāo)方程;

(2)點(diǎn)在直線上,且直線的傾斜角為,可設(shè)直線的參數(shù)方程為:

為參數(shù)),代入到曲線的方程得:,

,,

由參數(shù)的幾何意義知,故

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙、丙三家企業(yè)產(chǎn)品的成本分別為10000,12000,15000,其成本構(gòu)成如下圖所示,則關(guān)于這三家企業(yè)下列說(shuō)法錯(cuò)誤的是(

A.成本最大的企業(yè)是丙企業(yè)B.費(fèi)用支出最高的企業(yè)是丙企業(yè)

C.支付工資最少的企業(yè)是乙企業(yè)D.材料成本最高的企業(yè)是丙企業(yè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2020年春節(jié)期間,隨著新型冠狀病毒肺炎疫情在全國(guó)擴(kuò)散,各省均啟動(dòng)重大突發(fā)公共衛(wèi)生事件一級(jí)響應(yīng),采取了一系列有效的防控措施.如測(cè)量體溫、有效隔離等.

1)現(xiàn)從深圳市某社區(qū)的體溫登記表中隨機(jī)采集100個(gè)樣本.據(jù)分析,人群體溫近似服從正態(tài)分布.表示所采集100個(gè)樣本的數(shù)值在之外的的個(gè)數(shù),求X的數(shù)學(xué)期望.

2)疫情期間,武漢大學(xué)中南醫(yī)院重癥監(jiān)護(hù)室(ICU)主任彭志勇團(tuán)隊(duì)對(duì)138例確診患者進(jìn)行跟蹤記錄.為了分析并發(fā)癥(complications)與重癥患者(ICU)有關(guān)的可信程度,現(xiàn)從該團(tuán)隊(duì)發(fā)表在國(guó)際頂級(jí)醫(yī)學(xué)期刊JAMA《美國(guó)醫(yī)學(xué)會(huì)雜志》研究論文中獲得相關(guān)數(shù)據(jù).請(qǐng)將下列2×2列聯(lián)表補(bǔ)充完整,并判斷能否在犯錯(cuò)誤的概率不超過(guò)0.1%的前提下認(rèn)為重癥患者與并發(fā)癥有關(guān)?

附:若,則,,.

參考公式與臨界值表:,其中.

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,曲線的普通方程為,曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

(1)求曲線的極坐標(biāo)方程和曲線的普通方程;

(2)直線與曲線在第一象限內(nèi)的交點(diǎn)為,過(guò)點(diǎn)的直線交曲線兩點(diǎn),且的中點(diǎn)為,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】矩形中,,,點(diǎn)中點(diǎn),沿折起至,如圖所示,點(diǎn)在面的射影落在上.

(1)求證:面;

(2)求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)(其中是自然對(duì)數(shù)的底數(shù)),

(Ⅰ)求函數(shù)的極值;

(Ⅱ)設(shè),若滿足,試判斷方程的實(shí)數(shù)根個(gè)數(shù),并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某支教隊(duì)有8名老師,現(xiàn)欲從中隨機(jī)選出2名老師參加志愿活動(dòng),

(1)若規(guī)定選出的至少有一名女老師,則共有18種不同的需安排方案,試求該支教隊(duì)男、女老師的人數(shù);

(2)在(1)的條件下,記為選出的2位老師中女老師的人數(shù),寫出的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知命題:函數(shù)的圖像恒過(guò)定點(diǎn);命題:若函數(shù)為偶函數(shù),則函數(shù)的圖象關(guān)于直線對(duì)稱,則下列命題為真命題的是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)銳角△ABC的外接圓上的任意一點(diǎn)P所對(duì)應(yīng)的西姆松線為,P的對(duì)徑點(diǎn)為,的交點(diǎn)為。證明:對(duì)上兩點(diǎn)P、Q,當(dāng)且僅當(dāng)時(shí)關(guān)于點(diǎn)N對(duì)稱,其中,N為△ABC的九點(diǎn)圓的圓心。

查看答案和解析>>

同步練習(xí)冊(cè)答案