【題目】如圖,已知四棱錐P﹣ABCD的底面為菱形,∠BCD=120°,AB=PC=2,AP=BP=

(1)求證:AB⊥PC;
(2)求二面角B一PC﹣D的余弦值.

【答案】
(1)證明:取AB的中點O,連接PO,CO,AC,

∵△APB為等腰三角形,∴PO⊥AB)

又∵四邊形ABCD是菱形,∠BCD=120°,

∴△ACB是等邊三角形,∴CO⊥AB

又CO∩PO=O,∴AB⊥平面PCO,

又PC平面PCO,∴AB⊥PC


(2)解:∵ABCD為菱形,∠BCD=120°,AB=PC=2,AP=BP= ,

∴PO=1,CO= ,∴OP2+OC2=PC2,

∴OP⊥OC,

以O(shè)為原點,OC為x軸,OB為y軸,OP為z軸,

建立空間直角坐標(biāo)系,

則A(0,﹣1,0),B(0,1,0),C( ,0,0),

P(0,0,1),D( ,﹣2,0),

=( ,﹣1,0), =( ), =(0,2,0),

設(shè)平面DCP的法向量 =(x,y,z),

,令x=1,得 =(1,0, ),

設(shè)平面PCB的法向量 =(a,b,c),

,令a=1,得 =(1, ),

cos< >= =

∵二面角B一PC﹣D為鈍角,∴二面角B一PC﹣D的余弦值為﹣


【解析】(1)取AB的中點O,連接PO,CO,AC,由已知條件推導(dǎo)出PO⊥AB,CO⊥AB,從而AB⊥平面PCO,由此能證明AB⊥PC.(2)由已知得OP⊥OC,以O(shè)為原點,OC為x軸,OB為y軸,OP為z軸,建立空間直角坐標(biāo)系,利用向量法能求出二面角B一PC﹣D的余弦值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù) 的圖象向左平移 個單位,得到函數(shù)g(x)的圖象,則下列關(guān)于g(x)敘述正確的是(
A.g(x)的最小正周期為2π
B.g(x)在 內(nèi)單調(diào)遞增
C.g(x)的圖象關(guān)于 對稱
D.g(x)的圖象關(guān)于 對稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】執(zhí)行如圖的程序框圖,則輸出的s=( 。

A.
B.-
C.
D.-

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】極坐標(biāo)與直角坐標(biāo)系xOy有相同的長度單位,以原點O為極點,以x軸正半軸為極軸.曲線C1的極坐標(biāo)方程為ρ﹣2cosθ=0,曲線C1的參數(shù)方程為(t是參數(shù),m是常數(shù))
(Ⅰ)求C1的直角坐標(biāo)方程和C2的普通方程;
(Ⅱ)若C2與C1有兩個不同的公共點,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2x+sinx,且f(y2﹣2y+3)+f(x2﹣4x+1)≤0,則當(dāng)y≥1時, 的取值范圍是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) ,a∈R.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)有兩個零點x1 , x2 , (x1<x2),求證:1<x1<a<x2<a2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知曲線的參數(shù)方程為為參數(shù)).以直角坐標(biāo)系的原點為極點,軸的正半軸為極軸建立坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)求的普通方程和的直角坐標(biāo)方程;

(2)若過點的直線交于兩點,與交于,兩點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)定義域為R的函數(shù)f(x)= ,則關(guān)于x的方程f2(x)+bf(x)+c=0有5個不同的實數(shù)解xi(i=1,2,3,4,5),則f(x1+x2+x3+x4+x5+2)=(
A.
B.
C.2
D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列{an}中,a1=1,an﹣an+1=anan+1 , n∈N*
(1)求數(shù)列{an}的通項公式;
(2)Sn為{an}的前n項和,bn=S2n﹣Sn , 求bn的最小值.

查看答案和解析>>

同步練習(xí)冊答案