【題目】已知曲線C的極坐標方程是ρ=2cosθ,以極點為平面直角坐標系的原點,極軸為x軸的正半軸,建立平面直角坐標系,直線L的參數方程是 (t為參數).
(1)求曲線C的直角坐標方程和直線L的普通方程;
(2)設點P(m,0),若直線L與曲線C交于A,B兩點,且|PA||PB|=1,求實數m的值.
【答案】
(1)解:曲線C的極坐標方程是ρ=2cosθ,化為ρ2=2ρcosθ,可得直角坐標方程:x2+y2=2x.
直線L的參數方程是 (t為參數),消去參數t可得
(2)解:把 (t為參數),代入方程:x2+y2=2x化為: +m2﹣2m=0,
由△>0,解得﹣1<m<3.
∴t1t2=m2﹣2m.
∵|PA||PB|=1=|t1t2|,
∴m2﹣2m=±1,
解得 ,1.又滿足△>0.
∴實數m=1 ,1
【解析】(1)曲線C的極坐標方程是ρ=2cosθ,化為ρ2=2ρcosθ,利用 可得直角坐標方程.直線L的參數方程是 (t為參數),把t=2y代入 +m消去參數t即可得出.(2)把 (t為參數),代入方程:x2+y2=2x化為: +m2﹣2m=0,由△>0,得﹣1<m<3.利用|PA||PB|=t1t2 , 即可得出.
科目:高中數學 來源: 題型:
【題目】在直角坐標系xOy中,圓C的方程為(x﹣ )2+(y+1)2=9,以O為極點,x軸的非負半軸為極軸建立極坐標系.
(1)求圓C的極坐標方程;
(2)直線OP:θ= (p∈R)與圓C交于點M,N,求線段MN的長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數y=f(x)的定義在實數集R上的奇函數,且當x∈(﹣∞,0)時,xf′(x)<f(﹣x)(其中f′(x)是f(x)的導函數),若a= f( ),b=(lg3)f(lg3),c=(log2 )f(log2 ),則( )
A.c>a>b
B.c>b>a
C.a>b>c
D.a>c>b
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)的定義域為R.a,b∈R,若此函數同時滿足:
①當a+b=0時,有f(a)+f(b)=0;
②當a+b>0時,有f(a)+f(b)>0,
則稱函數f(x)為Ω函數.
在下列函數中:
①y=x+sinx;
②y=3x﹣( )x;
③y=
是Ω函數的為 . (填出所有符合要求的函數序號)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校從參加高三模擬考試的學生中隨機抽取60名學生,將其數學成績(均為整數)分成六段[90,100),[100,110),…,[140,150)后得到如下部分頻率分布直方圖.觀察圖形的信息,回答下列問題:
求分數在[120,130)內的頻率,并補全這個頻
率分布直方圖;
統(tǒng)計方法中,同一組數據常用該組區(qū)間的中點
值作為代表,據此估計本次考試的平均分;
(3)用分層抽樣的方法在分數段為[110,130)的學生中抽取一個容量為6的樣本,將該樣本看成一個總體,從中任取2個,求至多有1人在分數段[120,130)內的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ax2﹣x,若對任意x1 , x2∈[2,+∞),且x1≠x2 , 不等式 >0恒成立,則實數a的取值范圍是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設關于x的方程x2﹣ax﹣1=0和x2﹣x﹣2a=0的實根分別為x1、x2和x3、x4 , 若x1<x3<x2<x4 , 則實數a的取值范圍為 .
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com