【題目】某校從參加高三模擬考試的學生中隨機抽取60名學生,將其數(shù)學成績(均為整數(shù))分成六段[90,100),[100,110),…,[140,150)后得到如下部分頻率分布直方圖.觀察圖形的信息,回答下列問題:
求分數(shù)在[120,130)內(nèi)的頻率,并補全這個頻
率分布直方圖;
統(tǒng)計方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點
值作為代表,據(jù)此估計本次考試的平均分;
(3)用分層抽樣的方法在分數(shù)段為[110,130)的學生中抽取一個容量為6的樣本,將該樣本看成一個總體,從中任取2個,求至多有1人在分數(shù)段[120,130)內(nèi)的概率.
【答案】(1)如解析所示;(2)121;(3)
【解析】試題分析:(1)頻率分布直方圖中,小矩形的面積等于這一組的頻率,而頻率的和等于1,可求出分數(shù)在內(nèi)的頻率,即可求出矩形的高,畫出圖象即可;(2)同一組數(shù)據(jù)常用該組區(qū)間的中點值作為代表,將中點值與每一組的頻率相差再求出它們的和即可求出本次考試的平均分;(3)先計算、分數(shù)段的人數(shù),然后按照比例進行抽取,設(shè)從樣本中任取2人,至多有1人在分數(shù)段為事件,然后列出基本事件空間包含的基本事件,以及事件包含的基本事件,最后將包含事件的個數(shù)求出題目比值即可.
試題解析:(1)分數(shù)在[120,130)內(nèi)的頻率為:1-(0.1+0.15+0.15+0.25+0.05)=1-0.7=0.3, ,補全后的直方圖如下:
(2)平均分為:95×0.1+105×0.15+115×0.15+125×0.3+135×0.25+145×0.05=121.
(3)由題意,[110,120)分數(shù)段的人數(shù)為:60×0.15=9人,[120,130)分數(shù)段的人數(shù)為:60×0.3=18人.
∵用分層抽樣的方法在分數(shù)段為[110,130)的學生中抽取一個容量為6的樣本,
∴需在[110,120)分數(shù)段內(nèi)抽取2人,并分別記為m,n;
在[120,130)分數(shù)段內(nèi)抽取4人并分別記為a,b,c,d;
設(shè)“從樣本中任取2人,至多有1人在分數(shù)段[120,130)內(nèi)”為事件A,則基本事件有:(m,n),(m,a),(m,b),(m,c),(m,d),(n,a),(n,b),(n,c),(n,d),(a,b),(a,c),(a,d),(b,c),(b,d),(c,d)共15種.
事件A包含的基本事件有:(m,n),(m,a),(m,b),(m,c),(m,d),(n,a),(n,b),(n,c),(n,d)共9種,∴.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),.
(1)當時,求函數(shù)的單調(diào)區(qū)間;
(2)若關(guān)于的不等式在上有解,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“真人秀”熱潮在我國愈演愈烈,為了了解學生是否喜歡某“真人秀”節(jié)目,在某中學隨機調(diào)查了110名學生,得到如下列聯(lián)表:
男 | 女 | 總計 | |
喜歡 | 40 | 20 | 60 |
不喜歡 | 20 | 30 | 50 |
總計 | 60 | 50 | 110 |
由算得.
附表:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
參照附表,得到的正確結(jié)論是( )
A. 在犯錯誤的概率不超過的前提下,認為“喜歡該節(jié)目與性別有關(guān)”
B. 在犯錯誤的概率不超過的前提下,認為“喜歡該節(jié)目與性別無關(guān)”
C. 有以上的把握認為“喜歡該節(jié)目與性別有關(guān)”
D. 有
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在極坐標系中,已知點,圓
(I)在極坐標系中,以極點為原點,極軸為軸正半軸建立平面直角坐標系,取相同的長度單位,求圓的直角坐標方程;
(II)求點到圓圓心的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲、乙、丙三臺機床各自獨立地加工同一種零件,已知甲機床加工的零件是一等品而乙機床加工的零件不是一等品的概率是,乙機床加工的零件是一等品而丙機床加工的零件不是一等品的概率是,甲、乙兩臺機床加工的零件都是一等品的概率是.
(1)分別求甲、乙、丙三臺機床各自加工的零件是一等品的概率;
(2)從甲、乙、丙三臺機床加工的零件中各取一個檢驗,求至少有一個一等品的概率;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓經(jīng)過點, ,并且直線平分圓.
(1)求圓的方程;
(2)若直線與圓交于兩點,是否存在直線,使得(為坐標原點),若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】隨機抽取了40輛汽車在經(jīng)過路段上某點是的車速(),現(xiàn)將其分成六段:,
后得到如圖所示的頻率分布直方圖.
(I)現(xiàn)有某汽車途經(jīng)該點,則其速度低于80的概率約是多少?
(II)根據(jù)頻率分布直方圖,抽取的40輛汽車經(jīng)過該點的平均速度是多少?
(III)在抽取的40輛汽車且速度在()內(nèi)的汽車中任取2輛,求這2輛車車速都在()內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知以為圓心的圓及其上一點.
(1)是否存在直線與圓有兩個交點,并且,若有,求此直線方程,若沒有,請說明理由;
(2)設(shè)點滿足:存在圓上的兩點和使得,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com