【題目】在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,已知曲線: ,已知過點(diǎn)的直線的參數(shù)方程為(為參數(shù)),直線與曲線分別交于、兩點(diǎn).
(1)寫出曲線和直線的直角坐標(biāo)方程.
(2)若, , 成等比數(shù)列,求的值.
【答案】(1)曲線: ,直線: .(2) .
【解析】試題分析:
(1)極坐標(biāo)化為直角坐標(biāo)方程可得曲線的方程為,消去參數(shù)可得直線的直角坐標(biāo)方程為.
(2)把直線的參數(shù)方程代入拋物線方程可得.則, .結(jié)合參數(shù)的幾何意義有: , ,據(jù)此可得關(guān)于實(shí)數(shù)a的方程,解方程可得.
試題解析:
(1)曲線: ,
消去參數(shù)可得直線的直角坐標(biāo)方程為.
(2)把直線的參數(shù)方程代入,
得: .
設(shè), 對應(yīng)參數(shù)為, .則有
, .
因?yàn)?/span>, ,
.
所以,
即,
解得.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】調(diào)查表明,市民對城市的居住滿意度與該城市環(huán)境質(zhì)量、城市建設(shè)、物價(jià)與收入的滿意度有極強(qiáng)的相關(guān)性,現(xiàn)將這三項(xiàng)的滿意度指標(biāo)分別記為x、y、z,并對它們進(jìn)行量化:0表示不滿意,1表示基本滿意,2表示滿意,再用綜合指標(biāo)ω=x+y+z的值評定居民對城市的居住滿意度等級:若ω≥4,則居住滿意度為一級;若2≤ω≤3,則居住滿意度為二級;若0≤ω≤1,則居住滿意度為三級,為了解某城市居民對該城市的居住滿意度,研究人員從此城市居民中隨機(jī)抽取10人進(jìn)行調(diào)查,得到如下結(jié)果:
人員編號 | 1 | 2 | 3 | 4 | 5 |
(x,y,z) | (1,1,2) | (2,1,1) | (2,2,2) | (0,1,1) | (1,2,1) |
人員編號 | 6 | 7 | 8 | 9 | 10 |
(x,y,z) | (1,2,2) | (1,1,1) | (1,2,2) | (1,0,0) | (1,1,1) |
(1)在這10名被調(diào)查者中任取兩人,求這兩人的居住滿意度指標(biāo)z相同的概率;
(2)從居住滿意度為一級的被調(diào)查者中隨機(jī)抽取一人,其綜合指標(biāo)為m,從居住滿意度不是一級的被調(diào)查者中任取一人,其綜合指標(biāo)為n,記隨機(jī)變量ξ=m﹣n,求隨機(jī)變量ξ的分布列及其數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=(x+1)2ex , 設(shè)k∈[﹣3,﹣1],對任意x1 , x2∈[k,k+2],則|f(x1)﹣f(x2)|的最大值為( )
A.4e﹣3
B.4e
C.4e+e﹣3
D.4e+1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=bx﹣axlnx(a>0)的圖象在點(diǎn)(1,f(1))處的切線與直線平y(tǒng)=(1﹣a)x行.
(1)若函數(shù)y=f(x)在[e,2e]上是減函數(shù),求實(shí)數(shù)a的最小值;
(2)設(shè)g(x)= ,若存在x1∈[e,e2],使g(x1)≤ 成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在R上的奇函數(shù)f(x),當(dāng)x≥0時(shí),f(x)=,則關(guān)于x的函數(shù)F(x)=f(x)-a(0<a<1,a為常數(shù))的所有零點(diǎn)之和為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在極坐標(biāo)系中,已知某曲線C的極坐標(biāo)方程為,直線的極坐標(biāo)方程為
(1)求該曲線C的直角坐標(biāo)系方程及離心率
(2)已知點(diǎn)為曲線C上的動(dòng)點(diǎn),求點(diǎn)到直線的距離的最大值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有兩直線和,當(dāng)a在區(qū)間內(nèi)變化時(shí),求直線與兩坐標(biāo)軸圍成的四邊形面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于函數(shù)f(x),若存在x0∈R,使f(x0)=x0成立,則稱x0為函數(shù)f(x)的不動(dòng)點(diǎn).已知f(x)=x2+bx+c
(1)當(dāng)b=2,c=-6時(shí),求函數(shù)f(x)的不動(dòng)點(diǎn);
(2)已知f(x)有兩個(gè)不動(dòng)點(diǎn)為,求函數(shù)y=f(x)的零點(diǎn);
(3)在(2)的條件下,求不等式f(x)>0的解集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的通項(xiàng)公式為an=﹣2n+p,數(shù)列{bn}的通項(xiàng)公式為bn=2n﹣4 , 設(shè)cn= ,若在數(shù)列{cn}中c6<cn(n∈N* , n≠6),則p的取值范圍( )
A.(11,25)
B.(12,22)
C.(12,17)
D.(14,20)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com