在△ABC中,三邊長(zhǎng)分別為a,b,c,且A=30°,B=45°,a=1,則b的值是(  )
A、
1
2
B、
2
2
C、
2
D、
6
2
考點(diǎn):正弦定理
專題:計(jì)算題,解三角形
分析:由正弦定理可得
1
sin30°
=
b
sin45°
,即可得出結(jié)論.
解答: 解:∵三邊長(zhǎng)分別為a,b,c,且A=30°,B=45°,a=1,
∴由正弦定理可得
1
sin30°
=
b
sin45°
,
∴b=
2

故選:C.
點(diǎn)評(píng):本題考查正弦定理,考查學(xué)生的計(jì)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示程序框圖,則輸出的s的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)2x=5y=m,且
1
x
+
1
y
=2,則m的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

雙曲線
x2
4
-
y2
5
=1的漸近線方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
-x2+x,x≤1
log
1
3
x,x>1
,若對(duì)任意的x∈R,不等式f(x)≤m2-
3
4
m恒成立,則實(shí)數(shù)m的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=log2x與函數(shù)g(x)的圖象關(guān)于y=x對(duì)稱,且有g(shù)(a)g(b)=2,a>0,b>0,則
4
a
+
1
b
的最小值為( 。
A、9
B、
9
4
C、4
D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

圓(x-1)2+y2=3的圓心坐標(biāo)和半徑分別是( 。
A、(-1,0),3
B、(1,0),3
C、(-1,0),
3
D、(1,0),
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
ex+m
ex+1
,若?a,b,c∈R,f(a),f(b),f(c)為某一個(gè)三角形的邊長(zhǎng),則實(shí)數(shù)m的取值范圍是(  )
A、[
1
2
,1]
B、[0,1]
C、[1,2]
D、[
1
2
,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(理科)已知如圖,四面體ABCD中,P,Q,R分別在棱BC,CD,DA上,且BP=2PC,CQ=2QD,DR=RA,則A,B兩點(diǎn)到平面PQR的距離之比為( 。
A、1:4B、1:3
C、1:2D、1:1

查看答案和解析>>

同步練習(xí)冊(cè)答案