設
,
是兩條不同的直線,
,
是兩個不同的平面,則下列正確命題的序號
是
.
①.若
,
, 則
; ②.若
,
,則
;
③. 若
,
,則
; ④.若
,
,則
.
試題分析:由“兩平行線有一條垂直于一個平面,則另一條直線也垂直于這個平面”,①正確;
②.若
,
, 則
;不正確,還有可能
;
③.若
,
,則
,不正確,還有可能
相交;
④.若
,
,則
.不正確,應為
。綜上知,答案為①。
點評:簡單題,高考中的常見題型,記清定理、法則是關鍵。舉反例,可說明不成立。
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,四棱錐P-ABCD的底面ABCD是平行四邊形,M、N分別是AB、PC的中點,且
.證明:平面PAD⊥平面PDC.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,直角梯形
與等腰直角三角形
所在的平面互相垂直.
∥
,
,
,
.
(1)求證:
;
(2)求直線
與平面
所成角的正弦值;
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知
是三個不重合的平面,a,b是兩條不重合的直線,有下列三個條件:①
②
③
如果命題
且_______,則
為真命題,則可以在橫線處填入的條件是( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖1,在直角梯形
中,
,
,且
.
現(xiàn)以
為一邊向形外作正方形
,然后沿邊
將正方形
翻折,使平面
與平面
垂直,
為
的中點,如圖2.
(1)求證:
∥平面
;
(2)求證:
平面
;
(3)求點
到平面
的距離.
圖
圖
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,在四棱錐
中,
底面
,
,
,
是
的中點.
(Ⅰ)求
和平面
所成的角的大。
(Ⅱ)證明
平面
;
(Ⅲ)求二面角
的正弦值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知三棱柱
的側棱與底面邊長都相等,
在底面
上的射影為
的中點D,則異面直線AD與
所成的角的余弦值為( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,在四邊形
中,對角線
于
,
,
為
的重心,過點
的直線
分別交
于
且
‖,沿
將
折起,沿
將
折起,
正好重合于
.
(Ⅰ) 求證:平面
平面
;
(Ⅱ)求平面
與平面
夾角的大小.
查看答案和解析>>