如圖1,在直角梯形中,,,且
現(xiàn)以為一邊向形外作正方形,然后沿邊將正方形翻折,使平面與平面垂直,的中點(diǎn),如圖2.
(1)求證:∥平面;
(2)求證:平面
(3)求點(diǎn)到平面的距離.
  
                                    圖
(1)利用線線平行證明線面平行;(2)利用線線垂直證明線面垂直;(3)利用等體積法求解點(diǎn)到面平面的距離

試題分析:

解:(1)證明:取中點(diǎn),連結(jié)
在△中,分別為的中點(diǎn), 所以,且
由已知,, 所以,且.           3分
所以四邊形為平行四邊形. 所以.                4分
又因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010802038481.png" style="vertical-align:middle;" />平面,且平面,所以∥平面.         5分
(2)證明:在正方形中,
又因?yàn)槠矫?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010802147549.png" style="vertical-align:middle;" />平面,且平面平面
所以平面.  所以.               7分
在直角梯形中,,,可得
在△中,,
所以.所以.    8分
所以平面.                                        10分
(3)解法一:由(2)知,平面
又因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010802491433.png" style="vertical-align:middle;" />平面, 所以平面平面.            11分
過(guò)點(diǎn)的垂線交于點(diǎn),則平面
所以點(diǎn)到平面的距離等于線段的長(zhǎng)度                12分   
在直角三角形中,
所以
所以點(diǎn)到平面的距離等于.                          14分
解法二:由(2)知,
所以
                      12分
,設(shè)點(diǎn)到平面的距離為
, 所以
所以點(diǎn)到平面的距離等于.                          14分
點(diǎn)評(píng):立體幾何問(wèn)題主要是探求和證明空間幾何體中的平行和垂直關(guān)系以及空間角、體積等計(jì)算問(wèn)題.對(duì)于平行和垂直問(wèn)題的證明或探求,其關(guān)鍵是把線線、線面、面面之間的關(guān)系進(jìn)行靈活的轉(zhuǎn)化.在尋找解題思路時(shí),不妨采用分析法,從要求證的結(jié)論逐步逆推到已知條件.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知m、n為兩條不同的直線,為兩個(gè)不同的平面,下列四個(gè)命題中,其中正確的命題是    .(填寫(xiě)正確命題的序號(hào))
;②若;
;④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知直線,平面,且,給出四個(gè)命題:   ①若,則;②若,則;③若,則∥m;④若∥m,則.其中真命題的個(gè)數(shù)是
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

有以下四個(gè)命題:  其中真命題的序號(hào)是                      (  )
①若,則;②若,則
③若,則;   ④若,則
①②     ③④     ①④        ②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)是兩條不同的直線,,是兩個(gè)不同的平面,則下列正確命題的序號(hào)
     
①.若  ,, 則   ;      ②.若,則   
③. 若  ,,則   ;      ④.若   ,,則  

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)、是兩條不同的直線,是一個(gè)平面,則下列命題正確的是(  )
A.若,,則B.若,,則
C.若,,則D.若,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(理科)如圖分別是正三棱臺(tái)ABC-A1B1C1的直觀圖和正視圖,O,O1分別是上下底面的中心,E是BC中點(diǎn).

(1)求正三棱臺(tái)ABC-A1B1C1的體積;
(2)求平面EA1B1與平面A1B1C1的夾角的余弦;
(3) 若P是棱A1C1上一點(diǎn),求CP+PB1的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=900

求證:(1)PC⊥BC;
(2)求點(diǎn)A到平面PBC的距離。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在四棱錐中,底面,,,,


(1)若E是PC的中點(diǎn),證明:平面;
(2)試在線段PC上確定一點(diǎn)E,使二面角P- AB- E的大小為,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案