【題目】已知函數(shù)f(x)=
(1)求函數(shù)f(x)的零點(diǎn);
(2)若實(shí)數(shù)t滿足f(log2t)+f(log2 )<2f(2),求f(t)的取值范圍.
【答案】
(1)解:當(dāng)x<0時(shí),解 得:x=ln =﹣ln3,
當(dāng)x≥0時(shí),解 得:x=ln3,
故函數(shù)f(x)的零點(diǎn)為±ln3
(2)解:當(dāng)x>0時(shí),﹣x<0,
此時(shí)f(﹣x)﹣f(x)= = =0,
故函數(shù)f(x)為偶函數(shù),
又∵x≥0時(shí),f(x)= 為增函數(shù),
∴f(log2t)+f(log2 )<2f(2)時(shí),2f(log2t)<2f(2),
即|log2t|<2,
﹣2<log2t<2,
∴t∈( ,4)
故f(t)∈( , )
【解析】(1)分類討論,函數(shù)對(duì)應(yīng)方程根的個(gè)數(shù),綜合討論結(jié)果,可得答案.(2)分析函數(shù)的奇偶性和單調(diào)性,進(jìn)而可將不等式化為|log2t|<2,解得f(t)的取值范圍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了調(diào)查某地區(qū)老年人是否需要志愿者提供幫助,用簡(jiǎn)單隨機(jī)抽樣方法從該地區(qū)調(diào)查了500位老年人,結(jié)果如下:
男 | 女 | 總計(jì) | |
需要幫助 | 40 | m | 70 |
不需要幫助 | n | 270 | s |
總計(jì) | 200 | t | 500 |
(1)求m,n,s,t的值;
(2)估計(jì)該地區(qū)老年人中,需要志愿者提供幫助的比例;
(3)能否有99%的把握認(rèn)為該地區(qū)的老年人是否需要志愿者幫助與性別有關(guān).
參考公式:
隨機(jī)變量K2= ,n=a+b+c+d
在2×2列聯(lián)表:
y1 | y2 | 總計(jì) | |
x1 | a | b | a+b |
x2 | c | d | c+d |
總計(jì) | a+c | b+d | a+b+c+d |
P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x|﹣4<x<1},B={x|( )x≥2}.
(1)求A∩B,A∪B;
(2)設(shè)函數(shù)f(x)= 的定義域?yàn)镃,求(RA)∩C.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在R上的函數(shù)y=f(x)對(duì)任意x都滿足f(x+1)=﹣f(x),且當(dāng)0≤x<1時(shí),f(x)=x,則函數(shù)g(x)=f(x)﹣ln|x|的零點(diǎn)個(gè)數(shù)為個(gè).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=(log2x)2﹣4log2x+1.
(1)求f(8)的值;
(2)當(dāng)2≤x≤16時(shí),求f(x)的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班級(jí)體育課舉行了一次“投籃比賽”活動(dòng),為了了解本次投籃比賽學(xué)生總體情況,從中抽取了甲乙兩個(gè)小組樣本分?jǐn)?shù)的莖葉圖如圖所示.
(1)分別求出甲乙兩個(gè)小組成績(jī)的平均數(shù)與方差,并判斷哪一個(gè)小組的成績(jī)更穩(wěn)定:
(2)從甲組成績(jī)不低于60分的同學(xué)中,任意抽取3名同學(xué),設(shè)表示所抽取的3名同學(xué)中得分在的學(xué)生個(gè)數(shù),求的分布列及其數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD所在的平面和平面互相垂直,等腰梯形中, , , , , 分別為的中點(diǎn), 為底面的重心.
(Ⅰ)求證: ∥平面;
(Ⅱ)求直線與平面所成角的正弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com