已知在四棱錐中,底面是邊長為2的正方形,側棱平面,且為底面對角線的交點,分別為棱的中點

(1)求證://平面;
(2)求證:平面;
(3)求點到平面的距離。

(1)證明:是正方形,,的中點,又的中點,,且平面,平面,平面.  4分
(2)證明:,,,又可知,而,,,,,又,的中點,,而,平面,平面;
(3)點到平面的距離為.

解析試題分析:(1)證明:是正方形,,的中點,又的中點,,且平面,平面,平面.  4分
(2)證明:,,,又可知,而,,,,,又,的中點,,而,平面,平面  8分
(3)解:設點到平面的距離為,由(2)易證,,,,
,即,,得
即點到平面的距離為   12分
考點:本題主要考查立體幾何中的平行關系、垂直關系,距離的計算。
點評:中檔題,立體幾何題,是高考必考內容,往往涉及垂直關系、平行關系、角、距離、體積的計算。在計算問題中,有“幾何法”和“向量法”。利用幾何法,要遵循“一作、二證、三計算”的步驟。要注意將立體幾何問題轉化成了平面幾何問題。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

在長方體中,,過、三點的平面截去長方體的一個角后,得到如圖所示的幾何體,且這個幾何體的體積為

(1)求棱的長;
(2)求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,四邊形ABCD中,AB⊥AD,AD∥BC,AD=6,BC=4,AB=2,E、F分別在BC、AD上,EF∥AB.現(xiàn)將四邊形ABEF沿EF折起,使得平面ABEF平面EFDC.

(Ⅰ) 當,是否在折疊后的AD上存在一點,且,使得CP∥平面ABEF?若存在,求出的值;若不存在,說明理由;
(Ⅱ) 設BE=x,問當x為何值時,三棱錐ACDF的體積有最大值?并求出這個最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖四棱錐E—ABCD中,底面ABCD是平行四邊形。∠ABC=45°,BE=BC=   EA=EC=6,M為EC中點,平面BCE⊥平面ACE,AE⊥EB

(I)求證:AE⊥BC (II)求四棱錐E—ABCD體積

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在三棱柱ABC-A1B1C1中,側面ABB1A1為矩形,AB=1,AA1=,D為AA1中點,BD與AB1交于點O,CO丄側面ABB1A1.

(Ⅰ)證明:BC丄AB1;
(Ⅱ)若OC=OA,求二面角C1-BD-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在四棱錐中,底面是矩形,分別為的中點,,且

(1)證明:;
(2)求二面角的余弦值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,已知菱形所在平面與直角梯形所在平面互相垂直,,,分別是線段,的中點.

(I)求證:平面 平面;
(Ⅱ)點在直線上,且//平面,求平面與平面所成角的余弦值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知正方體中,面中心為

(1)求證:;
(2)求異面直線所成角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,為圓的直徑,點、在圓上,矩形所在的平面和圓所在的平面互相垂直,且,.

(Ⅰ)求證:平面;
(Ⅱ)求三棱錐的體積.

查看答案和解析>>

同步練習冊答案