在正△ABC中,D∈AB,E∈AC,向量數(shù)學公式,則以B,C為焦點,且過D,E的雙曲線離心率為


  1. A.
    數(shù)學公式
  2. B.
    數(shù)學公式
  3. C.
    數(shù)學公式
  4. D.
    數(shù)學公式
D
分析:設正△ABC的邊長為2c,以BC所在直線為x軸,以BC的中垂線為y軸,建立直角坐標系,則E的坐標為(,),
由題意知可設雙曲線的方程為 =1,把E的坐標代入雙曲線的方程化簡可得4a4-8a2c2+c4=0,
求得的值,即可得到的值.
解答:由向量,可得DE是△ABC的中位線,設正△ABC的邊長為2c,以BC所在直線為x軸,
以BC的中垂線為y軸,建立直角坐標系,則E的坐標為(,),由題意知可設雙曲線的方程為 =1,
把E的坐標代入雙曲線的方程得 -=1,∴4a4-8a2c2+c4=0,∵>1,
=4+2,∴=+1,
故選 D.
點評:本題考查雙曲線的標準方程,以及雙曲線的簡單性質(zhì)的應用,求出E的坐標為(,),是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在正△ABC中,D∈AB,E∈AC,向量
DE
=
1
2
BC
,則以B,C為焦點,且過D,E的雙曲線離心率為( 。
A、
5
3
B、
3
-1
C、
2
+1
D、
3
+1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在正△ABC中,D、E分別為AB、AC的中點,則以B、C為焦點且過點D、E的雙曲線的離心率為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在正△ABC中,D、E、F分別為各邊的中點,G、H、I、J分別為AF、AD、BE、DE的中點.將△ABC沿DE、EF、DF折成三棱錐以后,GH與IJ所成角的度數(shù)為(    )

A.90°                 B.60°                C.45°                 D.0°

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年人教版高考數(shù)學文科二輪專題復習提分訓練12練習卷(解析版) 題型:解答題

如圖所示,在正△ABC中,點D,E分別在邊AC,AB上,且AD=AC,AE=AB,BD,CE相交于點F.

(1)求證:A,E,F,D四點共圓;

(2)若正△ABC的邊長為2,求A,E,F,D所在圓的半徑.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年河北省高三上學期四調(diào)考試理科數(shù)學試卷(解析版) 題型:解答題

如圖,在正△ABC中,點D,E分別在邊AC, AB上,且AD=AC,AE=AB,BD,CE相交于點F.

(Ⅰ)求證:A,E,F,D四點共圓;

(Ⅱ)若正△ABC的邊長為2,求A,E,F,D所在圓的半徑.

 

查看答案和解析>>

同步練習冊答案