1.若函數(shù)y=sin2(x+φ)(0≤φ≤π)是R上的偶函數(shù),則φ等于( 。
A.0B.$\frac{π}{4}$C.$\frac{π}{2}$D.π

分析 由條件利用正弦函數(shù)、余弦函數(shù)的奇偶性,誘導(dǎo)公式可得2φ=$\frac{π}{2}$,由此求得φ的值.

解答 解:根據(jù)函數(shù)y=sin2(x+φ)(0≤φ≤π)是R上的偶函數(shù),
可得2φ=$\frac{π}{2}$,求得φ=$\frac{π}{4}$,
故選:B.

點(diǎn)評(píng) 本題主要考查正弦函數(shù)、余弦函數(shù)的奇偶性,誘導(dǎo)公式,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.過雙曲線$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點(diǎn)F作斜率為1的直線,該直線與雙曲線的兩條漸近線的交點(diǎn)分別為B,C,若$\overrightarrow{FB}=2\overrightarrow{BC}$,則雙曲線的離心率是( 。
A.$\sqrt{5}$B.$\sqrt{6}$C.5D.$\sqrt{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=x2-2kx+2,當(dāng)x≥-1時(shí),恒有f(x)≥k,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.給出下列函數(shù):
(1)f(x)=x2,g(x)=($\frac{1}{x}$)-2;
(2)f(x)=$\root{2n+1}{{x}^{2n+1}}$(n∈N*),g(x)=x;
(3)f(x)=$\sqrt{{x}^{2}-2x+1}$,g(x)=x-1;
(4)f(x)=$\frac{|x+2|}{2(x+2)}$,g(x)=$\left\{\begin{array}{l}{\frac{1}{2},x≥-2}\\{-\frac{1}{2},x<-2}\end{array}\right.$
其中能表示同一函數(shù)的共有( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=(x2-a+1)ex,g(x)=(x2-2)ex+2
(1)若f(x)在[-3,1]上是單調(diào)函數(shù),求a的取值范圍;
(2)若f(x)有兩個(gè)不同的極值點(diǎn)m,n(m<n),且2(m+n)≤m-1,記F(x)=e2f(x)+g(x),求F(m)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.解不等式:-x<2x+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)函數(shù)f(x)=ax2+x+1.
(1)若a=-1,求f(x)在區(qū)間[-1,3]上的值域.
(2)如果當(dāng)x∈(0,2]時(shí),f(x)>0恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.參數(shù)方程$\left\{\begin{array}{l}{x=\frac{{3t}^{2}}{1+{t}^{2}}}\\{y=\frac{5-{t}^{2}}{1{+t}^{2}}}\end{array}\right.$(t為參數(shù))表示的圖形為2x+y-5=0(0≤x<3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若A={x|x2=x},則-1∉A.

查看答案和解析>>

同步練習(xí)冊(cè)答案