【題目】袋中裝有大小形狀完全相同的5個小球,其中3個白球的標號分別為1、 2 、3, 2 個黑球的標號分別為1、3.

(Ⅰ)從袋中隨機摸出兩個球,求摸到的兩球顏色與標號都不相同的概率;

(Ⅱ)從袋中有放回地摸球,摸兩次,每次摸出一個球,求摸出的兩球的標號之和小于4 的概率.

【答案】(1) .

(2).

【解析】分析:(1)記5個球為白1、白2、白3、黑1、黑3,由此列舉法能求出從中摸兩個球,摸到的兩球顏色與標號都不相同的概率.
(2)從中有放回的摸兩次,每次摸球有5種結果,所以共有25種情況,利用列舉法能求出摸出的兩球的標號之和小于4的概率.

詳解:

Ⅰ)記5個球為白1、白2、白3、黑1、黑3,從中摸兩個球共有:(白1、白2)、

(白1、白3)、(白1、黑1)、(白1、黑3)、(白2、白3)、(白2、黑1)、(白2、黑3)、(白3、黑1)、

(白3、黑3)、(黑1、黑3)共10種情況

兩球顏色和標號都不相同的有(白1、黑3)、(白2、黑1)、(白2、黑3)、(白3、黑1)

4 種情況,則所求概率為

Ⅱ)從中有放回的摸兩次,每次摸球有5種結果,所以共有 25種情況

其中標號之和小于 4 的有(白1、白1)、(白1、黑1)、(黑1、白1)、(黑1、黑1)、(白

1、白2)、(黑1、白2)、(白2、白1)、(白2、黑1)共8種情況

所求概率為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】給出下列命題:,則;②,,則;③,則;④;⑤,,則,;⑥正數(shù),滿足,則的最小值為.其中正確命題的序號是__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四邊形,,,,,分別在,現(xiàn)將四邊形沿折起,使平面平面.

(Ⅰ)若,在折疊后的線段上是否存在一點,,使得平面?若存在求出的值;若不存在,說明理由;

(Ⅱ)求三棱錐的體積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設復數(shù)z=2m+(4-m2)i,當實數(shù)m取何值時,復數(shù)z對應的點:

(1)位于虛軸上?

(2)位于一、三象限?

(3)位于以原點為圓心,以4為半徑的圓上?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,且(c﹣2a) =c
(1)求B的大;
(2)已知f(x)=cosx(asinx﹣2cosx)+1,若對任意的x∈R,都有f(x)≤f(B),求函數(shù)f(x)的單調遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點A(l,2)在函數(shù)f(x)=ax3的圖象上,則過點A的曲線C:y=fx)的切線方程是( 。

A. 6x﹣y﹣4=0 B. x﹣4y+7=0

C. 6x﹣y﹣4=0或x﹣4y+7=0 D. 6x﹣y﹣4=0或3x﹣2y+1=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系xOy中,以O為極點,x軸正半軸為極軸建立極坐標系,圓C的極坐標方程為ρ=2cos,直線l的參數(shù)方程為 (t為參數(shù)),直線l與圓C交于A,B兩點,P是圓C上不同于A,B的任意一點.

(1)求圓心的極坐標;

(2)求△PAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《九章算術》是我國古代數(shù)學成就的杰出代表.其中《方田》章給出計算弧田面積所用的經驗公式為:弧田面積.弧田,由圓弧和其所對的弦所圍成.公式中“弦”指圓弧所對弦長,“矢”等于半徑長與圓心到弦的距離之差,按照上述經驗公式計算所得弧田面積與實際面積之間存在誤差.現(xiàn)有圓心角為,弦長等于米的弧田. 按照上述經驗公式計算所得弧田面積與實際面積的誤差為_______平方米.(用“實際面積減去弧田面積”計算)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】現(xiàn)有4個人參加某娛樂活動,該活動有甲、乙兩個游戲可供參加者選擇,為增加趣味性,約定:每個人通過擲一枚質地均勻的骰子決定自己去參加哪個游戲,擲出點數(shù)為1或2的人去參加甲游戲,擲出點數(shù)大于2的人去參加乙游戲.

(1) 求出4個人中恰有2個人去 參加甲游戲的概率;

(2)求這4個人中去參加甲游戲人數(shù)大于去參加乙游戲的人數(shù)的概率;

(3)用分別表示這4個人中去參加甲、乙游戲的人數(shù),記,求隨機變量的分布列與數(shù)學期望

查看答案和解析>>

同步練習冊答案