(2012•泰州二模)已知函數(shù)f(x)=msinx+
2
cosx
(m>0)的最大值為2.
(1)求函數(shù),f(x)在[0,π]上的單調(diào)遞減區(qū)間;
(2)△ABC中,a,b,c分別是角A,B,C所對的邊,C=60°,c=3,且f(A-
π
4
)+f(B-
π
4
)=4
6
sinAsinB
,求△ABC的面積.
分析::(1)將f(x)解析式利用兩角和與差的正弦函數(shù)公式化為一個角的正弦函數(shù),由正弦函數(shù)的值域表示出f(x)的最大值,由已知最大值為2列出關(guān)于m的方程,求出方程的解得到m的值,進(jìn)而確定出f(x)的解析式,由正弦函數(shù)的遞減區(qū)間為[2kπ+
π
2
,2kπ+
2
](k∈Z),列出關(guān)于x的不等式,求出不等式的解集即可得到f(x)在[0,π]上的單調(diào)遞減區(qū)間;
(2)由(1)確定的f(x)解析式化簡f(A-
π
4
)+f(B-
π
4
)=4
6
sinAsinB,再利用正弦定理化簡,得出a+b=
2
ab①,利用余弦定理得到(a+b)2-3ab-9=0②,將①代入②求出ab的值,再由sinC的值,利用三角形的面積公式即可求出三角形ABC的面積.
解答:解:(1)f(x)=msinx+
2
cosx=
m2+2
sin(x+θ)(其中sinθ=
2
m2+2
,cosθ=
m
m2+2
),
∴f(x)的最大值為
m2+2

m2+2
=2,
又m>0,∴m=
2
,
∴f(x)=2sin(x+
π
4
),
令2kπ+
π
2
≤x+
π
4
≤2kπ+
2
(k∈Z),解得:2kπ+
π
4
≤x≤2kπ+
4
(k∈Z),
則f(x)在[0,π]上的單調(diào)遞減區(qū)間為[
π
4
,π];
(2)設(shè)△ABC的外接圓半徑為R,由題意C=60°,c=3,得
a
sinA
=
b
sinB
=
c
sinC
=
3
sin60°
=2
3
,
化簡f(A-
π
4
)+f(B-
π
4
)=4
6
sinAsinB,得sinA+sinB=2
6
sinAsinB,
由正弦定理得:
a
2
3
+
b
2
3
=2
6
×
ab
2
3
×2
3
,即a+b=
2
ab①,
由余弦定理得:a2+b2-ab=9,即(a+b)2-3ab-9=0②,
將①式代入②,得2(ab)2-3ab-9=0,
解得:ab=3或ab=-
3
2
(舍去),
則S△ABC=
1
2
absinC=
3
3
4
點評:此題考查了正弦、余弦定理,三角形的面積公式,兩角和與差的正弦函數(shù)公式,以及正弦函數(shù)的單調(diào)性,熟練掌握定理及公式是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•泰州二模)已知角φ的終邊經(jīng)過點P(1,-2),函數(shù)f(x)=sin(ωx+φ)(ω>0)圖象的相鄰兩條對稱軸之間的距離等于
π
3
,則f(
π
12
)
=
-
10
10
-
10
10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•泰州二模)若拋物線y2=2px(p>0)上的點A(2,m)到焦點的距離為6,則p=
8
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•泰州二模)若動點P在直線l1:x-y-2=0上,動點Q在直線l2:x-y-6=0上,設(shè)線段PQ的中點為M(x1,y1),且(x1-2)2+(y1+2)2≤8,則x12+y12的取值范圍是
[8,16]
[8,16]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•泰州二模)如圖,三棱柱ABC-A1B1C1中,D、E分別是棱BC、AB的中點,點F在棱CC1上,已知AB=AC,AA1=3,BC=CF=2.
(1)求證:C1E∥平面ADF;
(2)若點M在棱BB1上,當(dāng)BM為何值時,平面CAM⊥平面ADF?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•泰州二模)已知z=(a-i)(1+i)(a∈R,i為虛數(shù)單位),若復(fù)數(shù)z在復(fù)平面內(nèi)對應(yīng)的點在實軸上,則a=
1
1

查看答案和解析>>

同步練習(xí)冊答案