【題目】我國(guó)古代數(shù)學(xué)名著《孫子算經(jīng)》中有如下問題:“今有三女,長(zhǎng)女五日一歸,中女四日一歸,少女三日一歸.問:三女何日相會(huì)?” 意思是:“一家出嫁的三個(gè)女兒中,大女兒每五天回一次娘家,二女兒每四天回一次娘家,小女兒每三天回一次娘家.三個(gè)女兒從娘家同一天走后,至少再隔多少天三人再次相會(huì)?”假如回娘家當(dāng)天均回夫家,若當(dāng)?shù)仫L(fēng)俗正月初二都要回娘家,則從正月初三算起的一百天內(nèi),有女兒回娘家的天數(shù)有
A. B. C. D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題:①在線性回歸模型中,相關(guān)指數(shù)表示解釋變量對(duì)于預(yù)報(bào)變量的貢獻(xiàn)率, 越接近于1,表示回歸效果越好;②兩個(gè)變量相關(guān)性越強(qiáng),則相關(guān)系數(shù)的絕對(duì)值就越接近于1;③在回歸直線方程中,當(dāng)解釋變量每增加一個(gè)單位時(shí),預(yù)報(bào)變量平均減少0.5個(gè)單位;④對(duì)分類變量與,它們的隨機(jī)變量的觀測(cè)值來說, 越小,“與有關(guān)系”的把握程度越大.其中正確命題的個(gè)數(shù)是( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=logm(m>0且m≠1),
(I)判斷f(x)的奇偶性并證明;
(II)若m=,判斷f(x)在(3,+∞)的單調(diào)性(不用證明);
(III)若0<m<1,是否存在β>α>0,使f(x)在[α,β]的值域?yàn)?/span>[logmm(β-1),logm(α-1)]?若存在,求出此時(shí)m的取值范圍;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正項(xiàng)數(shù)列滿足4Sn=(an+1)2 .
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn= , 求數(shù)列{bn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱ABC﹣A1B1C1中,AA1=AC=2AB=2,且BC1⊥A1C.
(Ⅰ)求證:平面ABC1⊥平面A1C1CA;
(Ⅱ)設(shè)D是A1C1的中點(diǎn),判斷并證明在線段BB1上是否存在點(diǎn)E,使DE∥平面ABC1;若存在,求三棱錐E﹣ABC1的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】圓心在y軸上,半徑為1,且過點(diǎn)(1,2)的圓的方程為( )
A.x2+(y﹣2)2=1
B.x2+(y+2)2=1
C.(x﹣1)2+(y﹣3)2=1
D.x2+(y﹣3)2=1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列命題:①定義在上的函數(shù)滿足,則一定不是上的減函數(shù);
②用反證法證明命題“若實(shí)數(shù),滿足,則都為0”時(shí),“假設(shè)命題的結(jié)論不成立”的敘述是“假設(shè)都不為0”;
③把函數(shù)的圖象向右平移個(gè)單位長(zhǎng)度,所得到的圖象的函數(shù)解析式為;
④“”是“函數(shù)為奇函數(shù)”的充分不必要條件.
其中所有正確命題的序號(hào)為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知矩陣A的逆矩陣A﹣1= .
(1)求矩陣A;
(2)求矩陣A﹣1的特征值以及屬于每個(gè)特征值的一個(gè)特征向量.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com