【題目】已知點為坐標原點,橢圓 的左、右焦點分別為,,通徑長(即過焦點且垂直于長軸的直線與橢圓相交所得的弦長)為3,短半軸長為.
(1)求橢圓的標準方程;
(2)設過點的直線與橢圓相交于,兩點,線段上存在一點到,兩邊的距離相等,若,間直線的斜率是否存在?若存在,求直線的斜率的取值范圍;若不存在,請說明理由.
【答案】(1) (2)見解析
【解析】
(1)由短半軸長為可得 ,由通徑長為3,可得,求出得,從而可得結果;(2)先證明,討論斜率不存在時不合題意,斜率存在時,可設直線的方程為,與橢圓方程聯(lián)立可得,利用平面向量數(shù)量積的坐標表示以及韋達定理可得到,從而可得結果.
(1)因為短半軸長為,所以.
設橢圓 的半焦距為.
由題意,得,解得.
由通徑長為3,得,即,解得.
所以橢圓的標準方程為.
(2)由(1)得,橢圓的標準方程為.
因為點到,兩邊的距離相等,
所以由角平分線定理,得是的角平分線.
由,得,即,則.
所以,所以.
易知左,右焦點,的坐標分別為,,
當直線的斜率存在時,設為,則直線的方程為.設點,.
聯(lián)立,得,
則恒成立.
所以,.
又 ,
所以.
所以,化簡得,
所以,解得 ;
當直線的斜率不存在時,點,,,,
則,不符合題意,所以舍去.
綜上,直線的斜率存在,且直線的斜率的取值范圍是.
科目:高中數(shù)學 來源: 題型:
【題目】黨的十九大報告指出,要以創(chuàng)新理念提升農業(yè)發(fā)展新動力,引領經(jīng)濟發(fā)展走向更高形態(tài).為進一步推進農村經(jīng)濟結構調整,某村舉辦水果觀光采摘節(jié),并推出配套鄉(xiāng)村游項目現(xiàn)統(tǒng)計了4月份100名游客購買水果的情況,得到如圖所示的頻率分布直方圖:
(Ⅰ)若將購買金額不低于元的游客稱為“水果達人”,現(xiàn)用分層抽樣的方法從樣本的“水果達人”中抽取人,求這人中消費金額不低于元的人數(shù);
(Ⅱ)從(Ⅰ)中的人中抽取人作為幸運客戶免費參加山村旅游項目,請列出所有的基本事件,并求人中至少有人購買金額不低于元的概率;
(Ⅲ)為吸引顧客,該村特推出兩種促銷方案,
方案一:每滿元可立減元;
方案二:金額超過元但又不超過元的部分打折,金額超過元但又不超過元的部分打折,金額超過元的部分打折.
若水果的價格為元/千克,某游客要購買千克,應該選擇哪種方案.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,在長方體ABCD﹣A1B1C1D1,若AB=BC,E,F分別是AB1,BC1的中點,則下列結論中不成立的是( )
A.EF與BB1垂直B.EF⊥平面BDD1B1
C.EF與C1D所成的角為45°D.EF∥平面A1B1C1D1
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,平行四邊形ABCD中,∠DAB=60°,AB=2,AD=4,將△CBD沿BD折起到△EBD的位置,使平面EBD⊥平面ABD.
(1)求證:AB⊥DE;
(2)若點F為BE的中點,求直線AF與平面ADE所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知是圓上的一個動點,過點作兩條直線,它們與橢圓都只有一個公共點,且分別交圓于點.
(Ⅰ)若,求直線的方程;
(Ⅱ)①求證:對于圓上的任意點,都有成立;
②求面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】新聞出版業(yè)不斷推進供給側結構性改革,深入推動優(yōu)化升級和融合發(fā)展,持續(xù)提高優(yōu)質出口產品供給,實現(xiàn)了行業(yè)的良性發(fā)展.下面是2012年至2016年我國新聞出版業(yè)和數(shù)字出版業(yè)營收增長情況,則下列說法錯誤的是( )
A. 2012年至2016年我國新聞出版業(yè)和數(shù)字出版業(yè)營收均逐年增加
B. 2016年我國數(shù)字出版業(yè)營收超過2012年我國數(shù)字出版業(yè)營收的2倍
C. 2016年我國新聞出版業(yè)營收超過2012年我國新聞出版業(yè)營收的1.5倍
D. 2016年我國數(shù)字出版營收占新聞出版營收的比例未超過三分之一
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知橢圓()的上頂點為,圓經(jīng)過點.
(1)求橢圓的方程;
(2)過點作直線交橢圓于,兩點,過點作直線的垂線交圓于另一點.若△PQN的面積為3,求直線的斜率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com