為增強市民的節(jié)能環(huán)保意識,某市面向全市征召義務宣傳志愿者.從符合條件的500名志愿者中隨機抽取100名志愿者,其年齡頻率分布直方圖如圖所示,其中年齡分組區(qū)間是:[20,25)[25,30)[30,35)[35,40)[40,45]
(Ⅰ)求圖中x的值并根據頻率分布直方圖估計這500名志愿者中年齡在[35,40)歲的人數(shù);
(Ⅱ)在抽出的100名志愿者中按年齡采用分層抽樣的方法抽取5名參加中心廣場的宣傳活動,再從這5名中采用簡單隨機抽樣方法選取3名志愿者擔任主要負責人,求這3名志愿者中“年齡低于35歲”的人數(shù)大于1的概率.
考點:頻率分布直方圖,古典概型及其概率計算公式
專題:概率與統(tǒng)計
分析:(I)由直方圖求出x,即可求出年齡在[35,40)歲的人數(shù);
(II)根據分層原理抽出五人,其中年齡“低于35歲”的人有3名,“年齡不低于35歲”的人有2名,計算出總的基本事件數(shù)與事件包含的基本事件數(shù)即可得出概率.
解答: 解:(I)∵小矩形的面積等于頻率,除[35,40]外的頻率和為0.70,
x=
1-0.70
5
=0.06

500名志愿者中,年齡在[35,40]歲的人數(shù)為0.06×5×500=150(人).…(4分)
(II)用分層抽樣的方法,從中選取5名,則其中年齡“低于35歲”的人有3名,
“年齡不低于35歲”的人有2名.…(6分)
由列舉法可得,總共為20種,-------(9分)
符合條件的為14種,概率為
7
10
-------(12分)
點評:本題考查古典概率模型與頻率分布直方圖,兩者的綜合題是此類題考查的重要形式.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

執(zhí)行如圖所示的程序框圖,若輸出的結果為21,則判斷框中應填( 。
A、i<5B、i<6
C、i<7D、i<8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

框圖表示的程序所輸出的結果是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△ABC是銳角三角形,且sin(B-
π
6
)cos(B-
π
3
)=
1
2

(Ⅰ)求角B的值;
(Ⅱ)求tanAtanC的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和為Sn,且滿足Sn-2an+n=0(n∈N*
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若數(shù)列{bn}滿足bn=log2(an+1)+1(n∈N*),在bk與bk+1之間插入2k(k∈N*)個2,得到一個新的數(shù)列{cm}.是否存在正整數(shù)m使得數(shù)列{cm}的前m項的和Tm=2014?若存在,求出m的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知公差不為0的等差數(shù)列{an}的前四項和S4=14,且a1,a3,a7成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設Tn為數(shù)列{
1
anan+1
}的前n項和,若2Tn<λ對n∈N*恒成立,求整數(shù)λ的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,a,b,c分別為角A、B、C的對邊,已知sin2B+sin2C=sin2A+
6
5
sinBsinC.
(1)求cosA的值.
(2)若sinB=2sinC,且△ABC的面積為
16
5
,試求邊a的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為e=
2
2
,橢圓上的點P與兩個焦點F1,F(xiàn)2構成的三角形的最大面積為1.
(1)求橢圓的方程.
(2)過圓M:x2+y2=r2(r>0)外一點P(x0,y0)作圓M的兩條切線PA,PB(且點分別為A,B),則直線AB的方程為x0x+y0y=r2,類比此結論,過點Q(3,1)作橢圓C的兩條切線QD、QE(切點分別為D、E),寫出直線DE的方程,并予以證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某程序框圖如圖所示,若輸入x=2,則該程序運行后輸出的值等于
 

 

查看答案和解析>>

同步練習冊答案