框圖表示的程序所輸出的結(jié)果是
 

考點(diǎn):程序框圖
專題:常規(guī)題型,算法和程序框圖
分析:根據(jù)程序框圖,列出每次執(zhí)行循環(huán)體后得出的s,i的值,當(dāng)i不滿足i≥10時(shí),退出循環(huán)體,輸出s的值.
解答: 解:第一次執(zhí)行循環(huán)體后s=12,i=11;
第二次執(zhí)行循環(huán)體后s=132,i=10;
第三次執(zhí)行循環(huán)體后s=1320,i=9;不滿足條件退出循環(huán)體輸出S=1320.
故答案為:1320.
點(diǎn)評(píng):本題考查了算法的三種結(jié)構(gòu),解決本題的關(guān)鍵是列出每次執(zhí)行循環(huán)體后得出的s,i值,并會(huì)判斷什么時(shí)候退出循環(huán)體.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

公差不為零的等差數(shù)列{an}的前n項(xiàng)和為Sn,若a3是a2與a6的等比中項(xiàng),S4=8,則S6=(  )
A、18B、24C、60D、90

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}中,a3+a4=a12,a1+a2=10,則a2+a4+…a100的值等于( 。
A、1300
B、1350
C、2650
D、
28000
13

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知復(fù)數(shù)z滿足
1+z
1-z
=i(i為虛數(shù)單位),則z的虛部為( 。
A、1B、-iC、iD、-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知實(shí)數(shù)x、y滿足約束條件
x+2y≥2
2x+y≤4
4x-y≥-1
,若向量
a
=(x,y),向量
b
=(3,-1).設(shè)z表示向量
a
在向量
b
方向上的投影,則z的最大值是( 。
A、-
1
10
B、-
3
2
10
C、
6
10
D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,設(shè)橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,上頂點(diǎn)為A,在x軸負(fù)半軸上有一點(diǎn)B,滿足
BF1
=
F1F2
,且
AB
AF2
=0.
(1)若過(guò)A、B、F2三點(diǎn)的圓恰好與直線l1:x-
3
y-3=0相切,求橢圓C的方程;
(2)在(1)的條件下,過(guò)右焦點(diǎn)F2作斜率為k的直線l與橢圓C交于M、N兩點(diǎn),在x軸上是否存在點(diǎn)P(m,0)使得以PM、PN為鄰邊的平行四邊形是菱形,如果存在,求出m的取值范圍,如果不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)F是橢圓
x2
1+a2
+y2
=1(a>0)的右焦點(diǎn),動(dòng)點(diǎn)P到點(diǎn)F的距離等于到直線x=-a的距離.
(1)求點(diǎn)P的軌跡C的方程;
(2)設(shè)過(guò)點(diǎn)F任作一直線與點(diǎn)P的軌跡交于A、B兩點(diǎn),直線OA、OB與直線x=-a分別交于點(diǎn)S、T(O為坐標(biāo)原點(diǎn)),試判斷
FS
FT
是否為定值?若是,求出這個(gè)定值;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

為增強(qiáng)市民的節(jié)能環(huán)保意識(shí),某市面向全市征召義務(wù)宣傳志愿者.從符合條件的500名志愿者中隨機(jī)抽取100名志愿者,其年齡頻率分布直方圖如圖所示,其中年齡分組區(qū)間是:[20,25)[25,30)[30,35)[35,40)[40,45]
(Ⅰ)求圖中x的值并根據(jù)頻率分布直方圖估計(jì)這500名志愿者中年齡在[35,40)歲的人數(shù);
(Ⅱ)在抽出的100名志愿者中按年齡采用分層抽樣的方法抽取5名參加中心廣場(chǎng)的宣傳活動(dòng),再?gòu)倪@5名中采用簡(jiǎn)單隨機(jī)抽樣方法選取3名志愿者擔(dān)任主要負(fù)責(zé)人,求這3名志愿者中“年齡低于35歲”的人數(shù)大于1的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知實(shí)數(shù)x,y滿足不等式
x≥0
y≥0
x+2y≤2
,則x-y的最大值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案