已知f(x)是奇函數(shù),當(dāng)x>0時,f(x)=x2-4x,則f(x)=
 
考點:函數(shù)奇偶性的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)函數(shù)奇偶性的性質(zhì),將x<0轉(zhuǎn)化為-x>0,即可求函數(shù)的表達(dá)式.
解答: 解:當(dāng)x<0,則-x>0,
∵當(dāng)x>0時,f(x)=x2-4x,
∴f(-x)=x2+4x,
∵f(x)是奇函數(shù),
∴f(-x)=x2+4x=-f(x),
即f(x)=-x2-4x,x<0.
故答案為:f(x)=
x2-4xx>0
-x2-4xx<0
點評:本題主要考查函數(shù)奇偶性的應(yīng)用,利用函數(shù)奇偶性的定義將x進(jìn)行轉(zhuǎn)化是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

平面直角坐標(biāo)系中,三角形ABC頂點分別為A(a,0),B(0,b),C(0,c),點D(d,0)在線段OA上(異于端點),設(shè)a,b,c,d均為非零實數(shù),直線BD交AC于點E,則OE所在的直線的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知某幾何體的三視圖如圖,其中正(主)視圖中半圓半徑為1,在該幾何體的體積為( 。
A、24-3π
B、24-
3
2
π
C、24-
2
3
π
D、46+2π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)條件p:a≥0;條件q:a2+a≥0,那么p是q的( 。
A、充分條件
B、必要條件
C、充要條件
D、非充分非必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果f(x+y)=f(x)•f(y),且f(1)=1,則
f(2)
f(1)
+
f(4)
f(3)
+…+
f(2010)
f(2009)
=( 。
A、1005B、1006
C、2008D、2010

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ax2-lnx,其中a>
1
2

(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)設(shè)f(x)的最小值為g(a),證明函數(shù)g(x)沒有零點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-2x+3在閉區(qū)間[0,m]上的值域是[2,3]則m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個體積為12
3
的幾何體的三視圖如下圖所示,其中正視圖和側(cè)視圖為矩形,俯視圖為正三角形,則這個幾何體的側(cè)視圖的面積為( 。
A、6
3
B、8
C、8
3
D、12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若于x的方程x2-ax+a2-3=0至少有一個正根,則實數(shù)a的取值范圍是(  )
A、[-2,2]
B、(
3
,2]
C、(-
3
,2]
D、[-
3
,2]

查看答案和解析>>

同步練習(xí)冊答案