分析 (1)利用正弦定理化簡(jiǎn)已知的第一個(gè)等式,得到a+b=4c,代入第二個(gè)等式中計(jì)算,即可求出c的長(zhǎng);
利用三角形的面積公式表示出三角形ABC的面積S,代入已知的等式中,利用完全平方公式變形后,將a+b=4代入化簡(jiǎn),即可求出cosC的值;
(2)由正弦定理列出關(guān)系式,變形后利用合比性質(zhì)化簡(jiǎn),即可求出所求式子的值.
解答 解:(1)∵sinA+sinB-4sinC=0,
∴a+b=4c,
∵△ABC的周長(zhǎng)L=5,
∴a+b+c=5,∴c=1,a+b=4.
∵面積S=$\frac{16}{5}$-$\frac{1}{5}$(a2+b2),
∴$\frac{1}{2}absinC$=$\frac{16}{5}$-$\frac{1}{5}$(a2+b2)=$\frac{16}{5}-\frac{1}{5}[(a+b)^{2}-2ab]$=$\frac{2}{5}ab$,
∴sinC=$\frac{4}{5}$,
∵c<a+b,C是銳角,
∴cosC=$\sqrt{1-si{n}^{2}C}$=$\frac{3}{5}$.
(2)$\frac{a}{sinA}$=$\frac{sinB}$=$\frac{c}{sinC}$=$\frac{5}{4}$,
∴$\frac{{a}^{2}}{asinA}$=$\frac{^{2}}{bsinB}$=$\frac{5}{4}$,
∴$\frac{{a}^{2}+^{2}}{asinA+bsinB}$=$\frac{5}{4}$.
點(diǎn)評(píng) 此題考查了正弦定理,三角形的面積公式,完全平方公式的運(yùn)用,以及比例的性質(zhì),熟練掌握正弦定理是解本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3a-1 | B. | 1-3a | C. | 3-a-1 | D. | 1-3-a |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com