已知△ABC的重心為G,內(nèi)角A,B,C的對邊分別為a,b,c,若a
GA
+b
GB
+
3
3
c
GC
=
0
,則角A為(  )
A、
π
6
B、
π
4
C、
π
3
D、
π
2
考點(diǎn):余弦定理
專題:三角函數(shù)的求值,解三角形
分析:根據(jù)G為三角形重心,化簡已知等式,用c表示出a與b,再利用余弦定理表示出cosA,將表示出的a與b代入求出cosA的值,即可確定出A的度數(shù).
解答: 解:∵△ABC的重心為G,內(nèi)角A,B,C的對邊分別為a,b,c,且a
GA
+b
GB
+
3
3
c
GC
=
0

∴(a-
3
3
c)
GA
+(b-
3
3
c)
GB
=
0
,
∴a-
3
3
c=0,b-
3
3
c=0,即a=
3
3
c,b=
3
3
c,
∴cosA=
b2+c2-a2
2bc
=
1
3
c2+c2-
1
3
c2
3
3
c2
=
3
2
,
則A=
π
6

故選:A.
點(diǎn)評:此題考查了余弦定理,平面向量的數(shù)量積運(yùn)算,熟練掌握余弦定理是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+mx+n,且f(x+2)是偶函數(shù),求m值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=-2x2+|x|+1,若f(log2m)>f(3),則實(shí)數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中的假命題是( 。
A、?x∈R,lgx=0
B、?x∈R,tanx=1
C、?x∈R,2x>0
D、?x∈R,sinx+cosx=
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若兩曲線在交點(diǎn)P處的切線互相垂直,則稱呼兩曲線在點(diǎn)P處正交.設(shè)橢圓
x2
4
+
y2
b2
=1(0<b<2)與雙曲線
x2
2
-y2=1在交點(diǎn)處正交,則橢圓
x2
4
+
y2
b2
=1的離心率為(  )
A、
1
2
B、
2
2
C、
3
2
D、
3
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果等差數(shù)列{an}中,那么a1+a3=6,a2=( 。
A、2B、3C、4D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,若(
CA
+
CB
)•
AB
=|
AB
|2,則( 。
A、△ABC是銳角三角形
B、△ABC是直角三角形
C、△ABC是鈍角三角形
D、△ABC的形狀不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

市教育局組織全市中小學(xué)的“特色社團(tuán)”評比活動(dòng).某高中從本校的三個(gè)校級優(yōu)秀社團(tuán)中選出9人組成代表隊(duì)參加全市的比賽,代表隊(duì)成員的構(gòu)成情況如表:
社團(tuán)名稱 心靈花語社 豆蔻文學(xué)社 科技創(chuàng)新設(shè)
人數(shù) 4 2 3
(Ⅰ)學(xué)校領(lǐng)導(dǎo)為了檢查這9名同學(xué)的準(zhǔn)備情況,從中隨機(jī)選出2名同學(xué)讓其介紹其所在社團(tuán)的主要特色,求這2名同學(xué)來自不同社團(tuán)的概率;
(Ⅱ)在這次全市中小學(xué)的“特色社團(tuán)”評比活動(dòng)中,該高中代表隊(duì)獲得了團(tuán)隊(duì)優(yōu)秀成績,并且有2名同學(xué)獲得了“社團(tuán)之星”榮譽(yù)稱號,設(shè)代表隊(duì)中心靈花語社成員獲得“社團(tuán)之星”榮譽(yù)稱號的人數(shù)為ξ,求隨機(jī)變量ξ的分布列及期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,是一幾何體的三視圖,則該幾何體的體積是
 

查看答案和解析>>

同步練習(xí)冊答案