設(shè)正項(xiàng)數(shù)列都是等差數(shù)列,且公差相等,(1)求的通項(xiàng)公式;(2)若的前三項(xiàng),記數(shù)列數(shù)列的前n項(xiàng)和為
(1),;
(2)由, ……。
解析試題分析:設(shè)的公差為,則,即,
由是等差數(shù)列得到:
(或= 2分,)
則且,所以, 4分,
所以:……5分, 6分
(2)由,得到:等比數(shù)列的公比,
所以:, 8分
所以 10分
…… 12分
考點(diǎn):本題主要考查等差中項(xiàng)、等比數(shù)列的的基礎(chǔ)知識(shí),“裂項(xiàng)相消法”,不等式的證明。
點(diǎn)評(píng):中檔題,本題綜合考查等差數(shù)列、等比數(shù)列的基礎(chǔ)知識(shí),本解答從確定通項(xiàng)公式入手,明確了所研究數(shù)列的特征!胺纸M求和法”、“錯(cuò)位相消法”、“裂項(xiàng)相消法”是高考常?嫉綌(shù)列求和方法。先求和,在利用“放縮法”證明不等式,是常用方法。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列的前項(xiàng)和為,且對(duì)任意的都有 ,
(Ⅰ)求數(shù)列的前三項(xiàng);
(Ⅱ)猜想數(shù)列的通項(xiàng)公式,并用數(shù)學(xué)歸納法證明
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)數(shù)列的前項(xiàng)和為,且 .
(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),數(shù)列的前項(xiàng)和為,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在數(shù)列中,
(Ⅰ)求數(shù)列的前項(xiàng)和;
(Ⅱ)若存在,使得成立,求實(shí)數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
數(shù)列的前項(xiàng)和為,且
(1)寫出與的遞推關(guān)系式,并求,,的值;
(2)猜想關(guān)于的表達(dá)式,并用數(shù)學(xué)歸納法證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
觀察下列三角形數(shù)表
記第行的第m個(gè)數(shù)為 .
(Ⅰ)分別寫出,,值的大;
(Ⅱ)歸納出的關(guān)系式,并求出關(guān)于n的函數(shù)表達(dá)式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)若函數(shù)在區(qū)間上有極值,求實(shí)數(shù)的取值范圍;
(2)若關(guān)于的方程有實(shí)數(shù)解,求實(shí)數(shù)的取值范圍;
(3)當(dāng),時(shí),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
在數(shù)列中,且成等差數(shù)列,成等比數(shù)列
(1)求及;
(2)猜想的通項(xiàng)公式,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分18分) 本題共有3個(gè)小題,第1小題滿分4分,第2小題滿分6分. 第3小題滿分8分.
(理)對(duì)于數(shù)列,從中選取若干項(xiàng),不改變它們?cè)谠瓉頂?shù)列中的先后次序,得到的數(shù)列稱為是原來數(shù)列的一個(gè)子數(shù)列. 某同學(xué)在學(xué)習(xí)了這一個(gè)概念之后,打算研究首項(xiàng)為正整數(shù),公比為正整數(shù)的無窮等比數(shù)列的子數(shù)列問題. 為此,他任取了其中三項(xiàng).
(1) 若成等比數(shù)列,求之間滿足的等量關(guān)系;
(2) 他猜想:“在上述數(shù)列中存在一個(gè)子數(shù)列是等差數(shù)列”,為此,他研究了與的大小關(guān)系,請(qǐng)你根據(jù)該同學(xué)的研究結(jié)果來判斷上述猜想是否正確;
(3) 他又想:在首項(xiàng)為正整數(shù),公差為正整數(shù)的無窮等差數(shù)列中是否存在成等比數(shù)列的子數(shù)列?請(qǐng)你就此問題寫出一個(gè)正確命題,并加以證明.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com