(本題滿分18分) 本題共有3個(gè)小題,第1小題滿分4分,第2小題滿分6分. 第3小題滿分8分.
(理)對于數(shù)列,從中選取若干項(xiàng),不改變它們在原來數(shù)列中的先后次序,得到的數(shù)列稱為是原來數(shù)列的一個(gè)子數(shù)列. 某同學(xué)在學(xué)習(xí)了這一個(gè)概念之后,打算研究首項(xiàng)為正整數(shù),公比為正整數(shù)的無窮等比數(shù)列的子數(shù)列問題. 為此,他任取了其中三項(xiàng).
(1) 若成等比數(shù)列,求之間滿足的等量關(guān)系;
(2) 他猜想:“在上述數(shù)列中存在一個(gè)子數(shù)列是等差數(shù)列”,為此,他研究了與的大小關(guān)系,請你根據(jù)該同學(xué)的研究結(jié)果來判斷上述猜想是否正確;
(3) 他又想:在首項(xiàng)為正整數(shù),公差為正整數(shù)的無窮等差數(shù)列中是否存在成等比數(shù)列的子數(shù)列?請你就此問題寫出一個(gè)正確命題,并加以證明.
(1) ;(2)不成立;(3) 對于首項(xiàng)為正整數(shù),公差為正整數(shù)的無窮等差數(shù)列,總可以找到一個(gè)無窮子數(shù)列,使得是一個(gè)等比數(shù)列.
解析試題分析:(1)由已知可得:, 1分
則,即有, 3分
,化簡可得. . 4分
(2) ,又,
故 , 6分
由于是正整數(shù),且,則,
又是滿足的正整數(shù),則,
,
所以,> ,從而上述猜想不成立. 10分
(3)命題:對于首項(xiàng)為正整數(shù),公差為正整數(shù)的無窮等差數(shù)列,總可以找到一個(gè)無窮子數(shù)列,使得是一個(gè)等比數(shù)列. 13分
此命題是真命題,下面我們給出證明.
證法一: 只要證明對任意正整數(shù)n,都在數(shù)列{an}中.因?yàn)閎n=a(1+d)n=a(1+d+d2+…+dn)=a(Md+1),這里M=+d+…+dn-1為正整數(shù),所以a(Md+1)=a+aMd是{an}中的第aM+1項(xiàng),證畢. 18分
證法二:首項(xiàng)為,公差為( )的等差數(shù)列為,考慮數(shù)列中的項(xiàng):
依次取數(shù)列中項(xiàng),,
,則由,可知,并由數(shù)學(xué)歸納法可知,數(shù)列為的無窮等比子數(shù)列. 18分
考點(diǎn):等比數(shù)列的簡單性質(zhì);數(shù)列的綜合應(yīng)用。
點(diǎn)評:此題考查了等差數(shù)列的性質(zhì)即通項(xiàng)公式,同時(shí)本題屬于新定義及結(jié)論探索性問題,這類試題的一般解法是:充分抓住已知條件,找準(zhǔn)問題的突破點(diǎn),由淺入深,多角度、多側(cè)面探尋,聯(lián)系符合題設(shè)的有關(guān)知識(shí),合理組合發(fā)現(xiàn)新結(jié)論,圍繞所探究的結(jié)論環(huán)環(huán)相扣,步步逼近發(fā)現(xiàn)規(guī)律,得出結(jié)論.熟練掌握公式及性質(zhì)是解本題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)正項(xiàng)數(shù)列都是等差數(shù)列,且公差相等,(1)求的通項(xiàng)公式;(2)若的前三項(xiàng),記數(shù)列數(shù)列的前n項(xiàng)和為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分16分)
已知有窮數(shù)列共有項(xiàng)(整數(shù)),首項(xiàng),設(shè)該數(shù)列的前項(xiàng)和為,且其中常數(shù)⑴求的通項(xiàng)公式;⑵若,數(shù)列滿足
求證:;
⑶若⑵中數(shù)列滿足不等式:,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知,點(diǎn)在函數(shù)的圖象上,其中
(1)證明數(shù)列是等比數(shù)列;
(2)設(shè),求及數(shù)列的通項(xiàng);
(3)記,求數(shù)列的前項(xiàng)和。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分13分)設(shè)數(shù)列為單調(diào)遞增的等差數(shù)列且依次成等比數(shù)列.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)若求數(shù)列的前項(xiàng)和;
(Ⅲ)若,求證:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)數(shù)列的前n項(xiàng)和為Sn=2n2,為等比數(shù)列,且
(Ⅰ)求數(shù)列和的通項(xiàng)公式;
(Ⅱ)設(shè),求數(shù)列前n項(xiàng)和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分) 已知曲線,從上的點(diǎn)作軸的垂線,交于點(diǎn),再從點(diǎn)作軸的垂線,交于點(diǎn),
設(shè).。
求數(shù)列的通項(xiàng)公式;
記,數(shù)列的前項(xiàng)和為,試比較與的大小;
記,數(shù)列的前項(xiàng)和為,試證明:。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)
已知數(shù)列的前n項(xiàng)和為,且.
(Ⅰ)求數(shù)列通項(xiàng)公式;
(Ⅱ)若,,求證數(shù)列是等比數(shù)列,并求數(shù)
列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
某工廠用7萬元錢購買了一臺(tái)新機(jī)器,運(yùn)輸安裝費(fèi)用2千元,每年投保、動(dòng)力消耗的費(fèi)用也為2千元,每年的保養(yǎng)、維修、更換易損零件的費(fèi)用逐年增加,第一年為2千元,第二年為3千元,第三年為4千元,依此類推,即每年增加1千元.問這臺(tái)機(jī)器最佳使用年限是多少年?并求出年平均費(fèi)用的最小值.(最佳使用年限佳是使年平均費(fèi)用最小的時(shí)間)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com