5.如圖,在正三棱柱ABC-A1B1C1中,AB=AA1=2,直線AC1與平面BCC1B1所成角的余弦值等于( 。
A.$\frac{\sqrt{5}}{2}$B.$\frac{\sqrt{10}}{5}$C.$\frac{\sqrt{5}}{4}$D.$\frac{\sqrt{10}}{4}$

分析 由題意,取BC的中點E,連接C1E,AE,證明AE⊥面BB1C1C,∠AC1E就是AC1與平面BB1C1C所成的角,解直角三角形AC1E即可.

解答 解:取BC的中點E,連接C1E,AE
則AE⊥BC,
正三棱柱ABC-A1B1C1中,
∴面ABC⊥面BB1C1C,
面ABC∩面BB1C1C=BC,
∴AE⊥面BB1C1C,
∴∠AC1E就是AC1與平面BB1C1C所成的角,
在Rt△AC1E中,∵AB=AA1
sin∠AC1E=$\frac{AE}{{AC}_{1}}$=$\frac{\sqrt{3}}{2\sqrt{2}}$=$\frac{\sqrt{6}}{4}$.cos∠AC1E=$\sqrt{1-(\frac{\sqrt{6}}{4})^{2}}$=$\frac{\sqrt{10}}{4}$.
故選:D.

點評 考查直線和平面所成的角,求直線和平面所成的角關(guān)鍵是找到斜線在平面內(nèi)的射影,把空間角轉(zhuǎn)化為平面角求解,屬中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.過點(2,-4),且傾斜角的余弦值為-$\frac{3}{5}$的直線方程為4x+3y+4=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知函數(shù)f(x)=x2+2x+2,x∈[-1,2],則函數(shù)f(x)的最大值是10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.cos20°+cos60°+cos100°+cos140°的為( 。
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知函數(shù)f(x)是(-∞,0)∪(0,+∞)上的奇函數(shù),當(dāng)x>0時,f(x)=-$\frac{1}{x}$+1
(1)當(dāng)x<0時,求函數(shù)f(x)的解析式;
(2)證明函數(shù)f(x)在區(qū)間(-∞,0)上是單調(diào)增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的焦距為4,且過點P($\sqrt{2}$,$\sqrt{3}$),求橢圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在平面直角坐標(biāo)系xoy中,已知直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=1+t}\\{y=4-2t}\end{array}\right.$(參數(shù)t∈R),同時,在以坐標(biāo)原點為極點,x軸的正半軸為極軸建立的極坐標(biāo)系中,圓C的極坐標(biāo)方程為ρ=4cosθ(θ為參數(shù))
(1)求圓C的直角坐標(biāo)方程.
(2)求直線l被圓C所截得的弦長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.在平面直角坐標(biāo)系xOy中,已知點P在曲線xy=1(x>0)上,點P在x軸上的射影為M.若點P在直線x-y=0的下方,則$\frac{O{P}^{2}}{OM-MP}$的最小值為2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知數(shù)列{an}滿足:a1=1,n∈N*
(1)若an+1=2an+n+1,求數(shù)列的通項an
(2)若an+1=2an+4n+2,求數(shù)列的通項an
(3)若an+1=$\frac{{a}_{n}}{-7{a}_{n}-6}$,求數(shù)列的通項an
(4)若an+1=an2+2an,求數(shù)列的通項an

查看答案和解析>>

同步練習(xí)冊答案