【題目】已知等差數(shù)列{an}的公差不為零,a1=25,且a1,a11,a13成等比數(shù)列.
(1)求{an}的通項(xiàng)公式;
(2)求a1+a4+a7+…+a3n-2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中,⊥平面,底面為正方形,為的中點(diǎn),.
(1)求證:;
(2)邊上是否存在一點(diǎn),使得//平面?若存在,求的長(zhǎng),若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖, 分別是橢圓的左、右焦點(diǎn), 是橢圓的頂點(diǎn), 是直線與橢圓的另一個(gè)交點(diǎn), .
(1)求橢圓的離心率;
(2)已知的面積為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校按分層抽樣的方法從高中三個(gè)年級(jí)抽取部分學(xué)生調(diào)查,從三個(gè)年級(jí)抽取人數(shù)的比例為如圖所示的扇形面積比,已知高二年級(jí)共有學(xué)生1 200人,并從中抽取了40人.
(1)該校的總?cè)藬?shù)為多少?(2)三個(gè)年級(jí)分別抽取多少人?
(3)在各層抽樣中可采取哪種抽樣方法?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平面內(nèi)兩定點(diǎn)和,動(dòng)點(diǎn),滿足,動(dòng)點(diǎn)的軌跡為曲線,給出下列五個(gè)命題:
①存在,使曲線過坐標(biāo)原點(diǎn);
②對(duì)于任意,曲線與軸有三個(gè)交點(diǎn);
③曲線關(guān)于軸對(duì)稱,但不關(guān)于軸對(duì)稱;
④若三點(diǎn)不共線,則周長(zhǎng)最小值為;
⑤曲線上與不共線的任意一點(diǎn)關(guān)于原點(diǎn)對(duì)稱的點(diǎn)為,則四邊形的面積不大于.
其中真命題的序號(hào)是__________(填上所有正確命題的序號(hào)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|a﹣3x|﹣|2+x|.
(1)若a=2,解不等式f(x)≤3;
(2)若存在實(shí)數(shù)a,使得不等式f(x)≥1﹣a+2|2+x|成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)y=sin(ωx+φ)(ω>0,|φ|<π的圖象向左平移 個(gè)單位,再將圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來的2倍(縱坐標(biāo)不變)所得的圖象解析式為y=sinx,則y=sin(ωx+φ)圖象上離y軸距離最近的對(duì)稱中心為( )
A.( ,0)
B.( π,0)
C.(﹣ ,0)
D.(﹣ ,0)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若定義在R上的偶函數(shù)f(x)滿足f(x﹣1)=f(x+1).且當(dāng)x∈[﹣1,0]時(shí),f(x)=﹣x2+1,如果函數(shù)g(x)=f(x)﹣a|x|恰有8個(gè)零點(diǎn),則實(shí)數(shù)a的值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=log ( )滿足f(﹣2)=1,其中a為實(shí)常數(shù).
(1)求a的值,并判定函數(shù)f(x)的奇偶性;
(2)若不等式f(x)>( )x+t在x∈[2,3]上恒成立,求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com