分析 (1)根據(jù)利潤=銷售收入-成本,結(jié)合銷售收入函數(shù),利用配方法,即可得出結(jié)論;
(2)求出平均利潤P(x),利用導(dǎo)數(shù)知識(shí),確定函數(shù)的單調(diào)性,即可求出最大值.
解答 解:(1)依題意得利潤L(x)=-$\frac{1}{3}$x2+400x-100x-30000=-$\frac{1}{3}$x2+300x-30000,x∈(0,500],…(2分)
∴L(x)=-$\frac{1}{3}$(x-450)2+37500,x∈(0,500],…(4分)
∵x∈(0,500],∴當(dāng)x=450時(shí),L(x)有最大值…(5分)
(2)依題意得P(x)=-$\frac{1}{3}$(x+$\frac{90000}{x}$)+300,0<x≤m…(7分)
P′(x)=-$\frac{{x}^{2}-90000}{3{x}^{2}}$,0<x≤m…(8分)
當(dāng)x∈(0,300)時(shí),P'(x)>0,P(x)在(0,300)遞增,
當(dāng)x∈(300,+∞)時(shí),P'(x)<0,P(x)在(300,+∞)遞遞減,…(10分)
所以當(dāng)0<m<300時(shí),x=m時(shí),P(x)取得最大值為(300-$\frac{m}{3}$-$\frac{30000}{m}$)元;當(dāng)m≥300時(shí),x=300時(shí),P(x)取得最大值為100元…(12分)
點(diǎn)評(píng) 本題考查函數(shù)模型的構(gòu)建,考查函數(shù)的最值,解題的關(guān)鍵是正確構(gòu)建函數(shù),利用導(dǎo)數(shù)知識(shí)求解.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (4,+∞) | B. | $[0,\frac{1}{2}]$ | C. | $(\frac{1}{2},4]$ | D. | (1,4] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ?x∈(0,+∞),lnx≠x-2 | B. | ?x∉(0,+∞),lnx=x-2 | ||
C. | ?x0∈(0,+∞),使lnx0≠x0-2 | D. | ?x0∉(0,+∞),lnx0=x0-2 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com