分析 (1)由投資債券等穩(wěn)健型產(chǎn)品的收益與投資額成正比,投資股票等風(fēng)險(xiǎn)型產(chǎn)品的收益與投資額的算術(shù)平方根成正比,結(jié)合函數(shù)圖象,我們可以利用待定系數(shù)法來(lái)求兩種產(chǎn)品的收益與投資的函數(shù)關(guān)系;
(2)由(1)的結(jié)論,我們?cè)O(shè)設(shè)投資債券類產(chǎn)品x萬(wàn)元,則股票類投資為20-x萬(wàn)元.這時(shí)可以構(gòu)造出一個(gè)關(guān)于收益y的函數(shù),然后利用求函數(shù)最大值的方法進(jìn)行求解.
解答 解:(1)f(x)=k1x,g(x)=${k}_{2}\sqrt{x}$,
f(1)=$\frac{1}{8}$=k1,g(1)=k2=$\frac{1}{2}$,
∴f(x)=$\frac{1}{8}$x(x≥0),g(x)=$\frac{1}{2}\sqrt{x}$(x≥0)
(2)設(shè):投資債券類產(chǎn)品x萬(wàn)元,則股票類投資為20-x萬(wàn)元.
y=f(x)+g(20-x)=$\frac{x}{8}+\frac{1}{2}\sqrt{20-x}$(0≤x≤20)
令t=$\sqrt{20-x}$,則y=$\frac{20-{t}^{2}}{8}+\frac{1}{2}t$=-$\frac{1}{8}(t-2)^{2}+3$.
所以當(dāng)t=2,即x=16萬(wàn)元時(shí),收益最大,ymax=3萬(wàn)元.
點(diǎn)評(píng) 函數(shù)的實(shí)際應(yīng)用題,我們要經(jīng)過(guò)析題→建模→解!原四個(gè)過(guò)程,在建模時(shí)要注意實(shí)際情況對(duì)自變量x取值范圍的限制,解模時(shí)也要實(shí)際問(wèn)題實(shí)際考慮.將實(shí)際的最大(。┗瘑(wèn)題,利用函數(shù)模型,轉(zhuǎn)化為求函數(shù)的最大(小)是最優(yōu)化問(wèn)題中,最常見(jiàn)的思路之一.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y=2x2 | B. | y=x-1 | C. | y=x${\;}^{\frac{1}{2}}$ | D. | y=x3-x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{8}$ | B. | $\frac{1}{4}$ | C. | $\frac{11}{8}$ | D. | $-\frac{5}{8}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com