13.命題“?x0∈(0,+∞),使lnx0=x0-2”的否定是( 。
A.?x∈(0,+∞),lnx≠x-2B.?x∉(0,+∞),lnx=x-2
C.?x0∈(0,+∞),使lnx0≠x0-2D.?x0∉(0,+∞),lnx0=x0-2

分析 直接利用特稱(chēng)命題的否定是全稱(chēng)命題寫(xiě)出結(jié)果即可.

解答 解:因?yàn)樘胤Q(chēng)命題的否定是全稱(chēng)命題,所以,命題“?x0∈(0,+∞),使lnx0=x0-2”的否定是?x∈(0,+∞),lnx≠x-2.
故選:A.

點(diǎn)評(píng) 本題考查命題的否定,特稱(chēng)命題與全稱(chēng)命題的否定關(guān)系,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知某服裝廠每天的固定成本是30000元,每天最大規(guī)模的生產(chǎn)量是m件.每生產(chǎn)一件服裝,成本增加100元,生產(chǎn)x件服裝的收入函數(shù)是R(x)=-$\frac{1}{3}$x2+400x,記L(x),P(x)分別為每天生產(chǎn)x件服裝的利潤(rùn)和 平均利潤(rùn)(平均利潤(rùn)=$\frac{總利潤(rùn)}{總產(chǎn)量}$).
(1)當(dāng)m=500時(shí),每天生產(chǎn)量x為多少時(shí),利潤(rùn)L(x)有最大值;
(2)每天生產(chǎn)量x為多少時(shí),平均利潤(rùn)P(x)有最大值,并求P(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.某小區(qū)提倡低碳生活,環(huán)保出行,在小區(qū)提供自行車(chē)出租.該小區(qū)有40輛自行車(chē)供小區(qū)住戶(hù)租賃使用,管理這些自行車(chē)的費(fèi)用是每日92元,根據(jù)經(jīng)驗(yàn),若每輛自行車(chē)的日租金不超過(guò)5元,則自行車(chē)可以全部出租,若超過(guò)5元,則每超過(guò)1元,租不出的自行車(chē)就增加2輛,為了便于結(jié)算,每輛自行車(chē)的日租金x元只取整數(shù),用f(x)元表示出租自行車(chē)的日純收入(日純收入=一日出租自行車(chē)的總收入-管理費(fèi)用)
(1)求函數(shù)f(x)的解析式及其定義域;
(2)當(dāng)租金定為多少時(shí),才能使一天的純收入最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知△ABC是邊長(zhǎng)為1的等邊三角形,點(diǎn)D,E分別是邊AB,BC的中點(diǎn),連接DE并延長(zhǎng)到點(diǎn)F,使$\overrightarrow{DE}$=2$\overrightarrow{EF}$,則$\overrightarrow{AF}$•$\overrightarrow{BC}$的值為( 。
A.$\frac{1}{8}$B.$\frac{1}{4}$C.$\frac{11}{8}$D.$-\frac{5}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,已知S2=6,an+1=4Sn+1,n∈N*
(I)求通項(xiàng)an
(Ⅱ)設(shè)bn=an-n-4,求數(shù)列{|bn|}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.某幾何體的三視圖如圖所示,且該幾何體的體積是3,則正視圖中的x的值是(  )
A.$\frac{5}{6}$B.2C.$\frac{5}{2}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{e}^{x},x≤0}\\{{x}^{2}+ax+1,x>0}\end{array}\right.$若對(duì)函數(shù)y=f(x)-b,當(dāng)b∈(0,1)時(shí)總有三個(gè)零點(diǎn),則a的取值范圍為(-∞,-2]).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知函數(shù)f(x)=$\frac{2^x}{{{2^x}+\sqrt{2}}}$.
(1)求f(x)+f(1-x)的值;
(2)若數(shù)列{an}滿(mǎn)足an=f(0)+f($\frac{1}{n}$)+f($\frac{2}{n}$)+…+f($\frac{n-1}{n}$)+f(1)(n∈N*),求數(shù)列{an}的通項(xiàng)公式;
(3)若數(shù)列{bn}滿(mǎn)足bn=2nan,Sn是數(shù)列{bn}的前n項(xiàng)和,是否存在正實(shí)數(shù)k,使不等式knSn>3bn對(duì)于一切的n∈N*恒成立?若存在,請(qǐng)求出k的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.在等比數(shù)列{an}中,前n項(xiàng)和Sn=2n+a(n∈N*),則a=-1.

查看答案和解析>>

同步練習(xí)冊(cè)答案