7.△ABC中,∠BAC=90°,AD⊥BC,垂足為D.若BC=m,∠B=α,則AD長為( 。
A.msin2αB.mcos2αC.msinαcosαD.msinαtanα

分析 在Rt△ABC中,解直角三角形求出AB,在Rt△ADB中,解直角三角形求出AD即可.

解答 解:∵Rt△ABC中,∠A=90°,BC=m,∠B=α,
∴AB=BC•cos∠B=m•cosα,
∵AD⊥BC,
∴∠ADB=90°,
∴AD=AB•sin∠B=m•cosα•sinα,
故答案為:m•cosα•sinα.
故選:C.

點評 本題考查了解直角三角形的性質(zhì),考查學(xué)生的計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.計算:
(1)${({2\frac{1}{4}})^{\frac{1}{2}}}-{({-9.6})^0}-{({3\frac{3}{8}})^{-\frac{2}{3}}}+{0.1^{-2}}$
(2)已知x+x-1=3,求$\frac{{{x^{\frac{1}{2}}}+{x^{-\frac{1}{2}}}}}{{{x^2}+{x^{-2}}+3}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.計算:${({π-3.14})^0}-{8^{\frac{2}{3}}}+{({\frac{1}{5}})^{-2}}×\frac{3}{25}-{5^{{{log}_5}3}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.如圖所示,點P在邊長為1的正方形的邊上運(yùn)動,設(shè)M是CD邊的中點,則當(dāng)P沿著A-B-C-M運(yùn)動時,以點P經(jīng)過的路程x為自變量,三角形APM的面積為y的函數(shù),則y=f(x)的圖象形狀大致是下列圖中的( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.如圖所示,是一個正方體的表面展開圖,A、B、C均為棱的中點,D是頂點,則在正方體中,異面直線AB和CD的夾角的余弦值為( 。
A.$\frac{{\sqrt{2}}}{5}$B.$\frac{{\sqrt{3}}}{5}$C.$\frac{{\sqrt{10}}}{5}$D.$\frac{{\sqrt{5}}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.正方體ABCD-A1B1C1D1中直線BC1與平面BB1D1D所成角的余弦值是$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.不等式2x2-5x-3≥0成立的一個必要不充分條件是( 。
A.x<0或x>2B.x≥0或x≤-2C.x<-1或x>4D.$x≤-\frac{1}{2}$或x≥3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,AB為圓O的直徑,E是圓O上不同于A,B的動點,四邊形ABCD為矩形,且AB=2,AD=1,平面ABCD⊥平面ABE.
(1)求證:BE⊥平面DAE;
(2)當(dāng)平面ABCD與平面CD E所成二面角為30°時,證明△ABE的面積為定值,并求出這個定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知兩個點M(-5,0)和N(5,0),若直線上存在點P,使|PM|-|PN|=6,則稱該直線為“B型直線”.給出下列四條直線:(1)y=x+1;(2)y=2; (3)y=$\frac{4}{3}$x;(4)y=2x+1判斷是“B型直線”的是( 。
A.(1)、(2)B.(2)、(3)C.(1)、(3)D.(2)、(4)

查看答案和解析>>

同步練習(xí)冊答案