曲線C上任一點到點E(-4,0),F(xiàn)(4,0)的距離的和為12,Cx軸的負(fù)半軸、正半軸依次交于A、B兩點,點PC上,且位于x軸上方,

(Ⅰ)求曲線C的方程;

(Ⅱ)求點P的坐標(biāo);

(Ⅲ)以曲線C的中心為圓心,AB為直徑作圓O,過點P的直線l截圓O的弦MN長為,求直線l的方程.

答案:
解析:

  解答:(Ⅰ)設(shè)G是曲線C上任一點,依題意,

       1分

  ∴曲線C是以E、F為焦點的橢圓,且橢圓的長半軸a=6,半焦距c=4,

  ∴短半軸b,    3分

  ∴所求的橢圓方程為;     4分

  (Ⅱ)由已知,,設(shè)點P的坐標(biāo)為,則

  由已知得

       6分

  則,解之得,    7分

  由于,所以只能取,于是,

  所以點P的坐標(biāo)為;     8分

  (Ⅲ)圓O的圓心為(0,0),半徑為6,其方程為,    9分

  若過P的直線lx軸垂直,則直線l的方程為,這時,圓心到l的距離

  ∴,符合題意;     10分

  若過P的直線l不與x軸垂直,設(shè)其斜率為k,則直線l的方程為,

  即,

  這時,圓心到l的距離

  ∴,    12分

  化簡得,,∴

  ∴直線l的方程為,    13分

  綜上,所求的直線l的方程為     14分


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

曲線C上任一點到點E(-4,0),F(xiàn)(4,0)的距離的和為12,C與x軸的負(fù)半軸、正半軸依次交于A、B兩點,點P在C上,且位于x軸上方,PA⊥PF.
(Ⅰ)求曲線C的方程;
(Ⅱ)求點P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線C上任一點到點E(-4,0),F(xiàn)(4,0)的距離的和為12,C與x軸的負(fù)半軸、正半軸依次交于A,B兩點,點P在曲線C上且位于x軸上方,滿足
PA
PF
=0

(1)求曲線C的方程;
(2)求點P的坐標(biāo);
(3)以曲線C的中心O為圓心,AB為直徑作圓O,是否存在過點P的直線l使其被圓O所截的弦MN長為3
15
,若存在,求直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

曲線C上任一點到點E(-4,0),F(xiàn)(4,0)的距離的和為12,C與x軸的負(fù)半軸、正半軸依次交于A,B兩點,點P在曲線C上且位于x軸上方,滿足數(shù)學(xué)公式
(1)求曲線C的方程;
(2)求點P的坐標(biāo);
(3)以曲線C的中心O為圓心,AB為直徑作圓O,是否存在過點P的直線l使其被圓O所截的弦MN長為數(shù)學(xué)公式,若存在,求直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

曲線C上任一點到點E(-4,0),F(xiàn)(4,0)的距離的和為12,C與x軸的負(fù)半軸、正半軸依次交于A、B兩點,點P在C上,且位于x軸上方,PA⊥PF.
(Ⅰ)求曲線C的方程;
(Ⅱ)求點P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年安徽省六校教育研究會高考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

曲線C上任一點到點E(-4,0),F(xiàn)(4,0)的距離的和為12,C與x軸的負(fù)半軸、正半軸依次交于A,B兩點,點P在曲線C上且位于x軸上方,滿足
(1)求曲線C的方程;
(2)求點P的坐標(biāo);
(3)以曲線C的中心O為圓心,AB為直徑作圓O,是否存在過點P的直線l使其被圓O所截的弦MN長為,若存在,求直線l的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案