曲線C上任一點(diǎn)到點(diǎn)E(-4,0),F(xiàn)(4,0)的距離的和為12,C與x軸的負(fù)半軸、正半軸依次交于A、B兩點(diǎn),點(diǎn)P在C上,且位于x軸上方,PA⊥PF.
(Ⅰ)求曲線C的方程;
(Ⅱ)求點(diǎn)P的坐標(biāo).
分析:(I)設(shè)G是曲線C上任意一點(diǎn),依題意,|GE|+|GF|=12.a(chǎn)=6,c=4,b=
20
,由此可知所求的橢圓方程.
(II)由已知A(-6,0),F(xiàn)(4,0),設(shè)點(diǎn)P的坐標(biāo)為(x,y),則
AP
=(x+6,y),
FP
=(x-4,y)由已知結(jié)合向量的數(shù)量積為0,由此可推導(dǎo)出點(diǎn)P的坐標(biāo).
解答:解:(I)設(shè)G是曲線C上任意一點(diǎn),依題意,|GE|+|GF|=12.
所以曲線C是以E、F為焦點(diǎn)的橢圓,且橢圓的長(zhǎng)半袖a=6,半焦距c=4,
所以短半軸b=
62-42
=
20

所以所求的橢圓方程為
x2
36
+
y2
20
=1
;
(II)設(shè)點(diǎn)P的坐標(biāo)為(x,y)
AP
=(x+6,y),
FP
=(x-4,y),由已知得 
x2
36
+
y2
20
=1
(x+6)(x-4)+y2=0

則 2x2+9x-18=0,解之得x=-6或x=
3
2

當(dāng)x=-6時(shí),y=0,與y>0矛盾,舍去;
當(dāng)x=
3
2
時(shí),y2=
75
4
,取y=
5
3
2
(舍負(fù))
P(
3
2
,
5
3
2
)
點(diǎn)評(píng):本題考查直線和圓錐曲線的位置關(guān)系,解題時(shí)要認(rèn)真審題,仔細(xì)解答.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

曲線C上任一點(diǎn)到點(diǎn)E(-4,0),F(xiàn)(4,0)的距離的和為12,C與x軸的負(fù)半軸、正半軸依次交于A,B兩點(diǎn),點(diǎn)P在曲線C上且位于x軸上方,滿足
PA
PF
=0

(1)求曲線C的方程;
(2)求點(diǎn)P的坐標(biāo);
(3)以曲線C的中心O為圓心,AB為直徑作圓O,是否存在過(guò)點(diǎn)P的直線l使其被圓O所截的弦MN長(zhǎng)為3
15
,若存在,求直線l的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

曲線C上任一點(diǎn)到點(diǎn)E(-4,0),F(xiàn)(4,0)的距離的和為12,C與x軸的負(fù)半軸、正半軸依次交于A,B兩點(diǎn),點(diǎn)P在曲線C上且位于x軸上方,滿足數(shù)學(xué)公式
(1)求曲線C的方程;
(2)求點(diǎn)P的坐標(biāo);
(3)以曲線C的中心O為圓心,AB為直徑作圓O,是否存在過(guò)點(diǎn)P的直線l使其被圓O所截的弦MN長(zhǎng)為數(shù)學(xué)公式,若存在,求直線l的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

曲線C上任一點(diǎn)到點(diǎn)E(-4,0),F(xiàn)(4,0)的距離的和為12,C與x軸的負(fù)半軸、正半軸依次交于A、B兩點(diǎn),點(diǎn)P在C上,且位于x軸上方,PA⊥PF.
(Ⅰ)求曲線C的方程;
(Ⅱ)求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年安徽省六校教育研究會(huì)高考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

曲線C上任一點(diǎn)到點(diǎn)E(-4,0),F(xiàn)(4,0)的距離的和為12,C與x軸的負(fù)半軸、正半軸依次交于A,B兩點(diǎn),點(diǎn)P在曲線C上且位于x軸上方,滿足
(1)求曲線C的方程;
(2)求點(diǎn)P的坐標(biāo);
(3)以曲線C的中心O為圓心,AB為直徑作圓O,是否存在過(guò)點(diǎn)P的直線l使其被圓O所截的弦MN長(zhǎng)為,若存在,求直線l的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案