【題目】某快遞公司招聘快遞騎手,該公司提供了兩種日工資方案:方案(1)規(guī)定每日底薪50元,快遞騎手每完成一單業(yè)務(wù)提成3元:方案(2)規(guī)定每日底薪100元,快遞業(yè)務(wù)的前44單沒有提成,從第45單開始,每完成一單提成5元.該快遞公司記錄了每天騎手的人均業(yè)務(wù)量.現(xiàn)隨機(jī)抽取100天的數(shù)據(jù),將樣本數(shù)據(jù)分為七組,整理得到如圖所示的頻率分布直方圖.

(Ⅰ)隨機(jī)選取一天,估計(jì)這一天該快遞公司的騎手的人均日快遞業(yè)務(wù)量不少于65單的概率;

(Ⅱ)若騎手甲、乙、丙選擇了日工資方案(1),丁、戊選擇了日工資方案(2).現(xiàn)從上述5名騎手中隨機(jī)選取2人,求至少有1名騎手選擇方案(2)的概率;

(Ⅲ)若僅從人均日收入的角度考慮,請(qǐng)你利用所學(xué)的統(tǒng)計(jì)學(xué)知識(shí)為新聘騎手做出日工資方案的選擇,并說明理由(同組中的每個(gè)數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代替)

【答案】(Ⅰ)0.4;(II(Ⅲ)選擇方案(1),理由見解析

【解析】

(Ⅰ)將這三組的頻率求出,再相加即可得到答案;

(Ⅱ)利用列舉法和古典概型的概率公式計(jì)算可得結(jié)果;

(Ⅲ)利用頻率分布直方圖計(jì)算出快遞公司人均日快遞量的平均數(shù),根據(jù)平均數(shù)計(jì)算出兩種方案下騎手的人均日收入,比較可得結(jié)果.

(Ⅰ)設(shè)事件隨機(jī)選取一天.這一天該快遞公司的騎手的人均日快遞業(yè)務(wù)量不少于65

依題意,快遞公司的人均日快遞業(yè)務(wù)量不少于65單的頻率分別為:0.2、0.15、0.05,

因?yàn)?/span>,所以估計(jì)為

(Ⅱ)設(shè)事件B從五名騎手中隨機(jī)選取2人.至少有1名騎手選擇方案(2

從五名騎手中隨機(jī)選取2名騎手,有10種情況,

{甲,乙}{甲,丙},{甲,丁},{甲,戊}{乙,丙},{乙,丁},{乙,戊},{丙,丁},{丙,戊},{丁,戊}

其中至少有1名騎手選擇方案(2)的情況為{甲,丁},{甲,戊},{乙,丁},{乙,戊},{丙,丁},{丙,戊}{丁,戊}7種情況,所以

(Ⅲ)快遞公司人均日快遞量的平均數(shù)是:

因此,方案(1)日工資約為元,

方案(2)日工資約為元,

故騎手應(yīng)選擇方案(1.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,三棱錐SABC中,△ABC與△SBC都是邊長(zhǎng)為1的正三角形,二面角ABCS的大小為,若S,A,BC四點(diǎn)都在球O的表面上,則球O的表面積為(

A.πB.πC.πD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線Cy22x,過點(diǎn)Ea,0)的直線lC交于不同的兩點(diǎn)Px1,y1),Qx2,y2),且滿足y1y2=﹣4,以Q為中點(diǎn)的線段的兩端點(diǎn)分別為M,N,其中Nx軸上,MC上,則a_____|PM|的最小值為_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖在四棱錐中,平面底面ABCD,底面ABCD是等腰梯形,,.

1)證明:.

2)求平面PCD與平面PAB夾角(銳角)的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地出現(xiàn)了蟲害,農(nóng)業(yè)科學(xué)家引入了蟲害指數(shù)數(shù)列,表示第周的蟲害的嚴(yán)重程度,蟲害指數(shù)越大,嚴(yán)重程度越高,為了治理蟲害,需要環(huán)境整治、殺滅害蟲,然而由于人力資源有限,每周只能采取以下兩個(gè)策略之一:

策略:環(huán)境整治,蟲害指數(shù)數(shù)列滿足;

策略:殺滅害蟲,蟲害指數(shù)數(shù)列滿足;

當(dāng)某周蟲害指數(shù)小于1時(shí),危機(jī)就在這周解除.

1)設(shè)第一周的蟲害指數(shù),用哪一個(gè)策略將使第二周的蟲害嚴(yán)重程度更。

2)設(shè)第一周的蟲害指數(shù),如果每周都采用最優(yōu)的策略,蟲害的危機(jī)最快在第幾周解除?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角中,,,分別是、上一點(diǎn),且滿足平分,以為折痕將折起,使點(diǎn)到達(dá)點(diǎn)的位置,且平面平面.

1)證明:;

2)求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商場(chǎng)一年中各月份的收入、支出(單位:萬元)情況的統(tǒng)計(jì)如折線圖所示,則下列說法正確的是(

A.23月份的收入的變化率與1112月份的收入的變化率相同

B.支出最高值與支出最低值的比是

C.第三季度平均收入為60萬元

D.利潤(rùn)最高的月份是2月份

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在上的函數(shù)若滿足:①對(duì)任意、,都有;②對(duì)任意,都有,則稱函數(shù)為“中心捺函數(shù)”,其中點(diǎn)稱為函數(shù)的中心.已知函數(shù)是以為中心的“中心捺函數(shù)”,若滿足不等式,當(dāng)時(shí),的取值范圍為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種治療新型冠狀病毒感染肺炎的復(fù)方中藥產(chǎn)品的質(zhì)量以其質(zhì)量指標(biāo)值衡量,質(zhì)量指標(biāo)越大表明質(zhì)量越好,為了提高產(chǎn)品質(zhì)量,我國(guó)醫(yī)療科研專家攻堅(jiān)克難,新研發(fā)出、兩種新配方,在兩種新配方生產(chǎn)的產(chǎn)品中隨機(jī)抽取數(shù)量相同的樣本,測(cè)量這些產(chǎn)品的質(zhì)量指標(biāo)值,規(guī)定指標(biāo)值小于時(shí)為廢品,指標(biāo)值在為一等品,大于為特等品.現(xiàn)把測(cè)量數(shù)據(jù)整理如下,其中配方廢品有件.

配方的頻數(shù)分布表

質(zhì)量指標(biāo)值分組

頻數(shù)

1)求,的值;

2)試確定配方和配方哪一種好?(說明:在統(tǒng)計(jì)方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點(diǎn)值作為代表)

查看答案和解析>>

同步練習(xí)冊(cè)答案