已知函數(shù)()  
(1)求函數(shù)的單調(diào)遞減區(qū)間;
(2)若函數(shù)在區(qū)間[-2,2]上的最大值為20,求它在該區(qū)間上的最小值

(1)
(1)令
的單調(diào)遞減區(qū)間為
(2)列表如下:

x
-2
(-2,-1)
-1
(-1,2)
2
f′(x)
 
-
0
+
 
f(x)
+2

極小值-5

+22
由題意

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分14分)
已知函數(shù)
(Ⅰ)求的最小值;
(Ⅱ)若上為單調(diào)增函數(shù),求實(shí)數(shù)的取值范圍;
(Ⅲ)證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)時(shí)都取得極值
(1)求的值與函數(shù)的單調(diào)區(qū)間
(2)若對(duì),不等式恒成立,求的取值范圍 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)討論函數(shù)在定義域內(nèi)的極值點(diǎn)的個(gè)數(shù);
(2)若函數(shù)處取得極值,對(duì),恒成立,
求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)(x∈R).
(1)求函數(shù)的單調(diào)區(qū)間和極值;
(2)已知函數(shù)的圖象與函數(shù)的圖象關(guān)于直線x=1對(duì)稱,證明當(dāng)x>1時(shí),

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù).
(1)若的兩個(gè)極值點(diǎn)為,且,求實(shí)數(shù)的值;
(2)是否存在實(shí)數(shù),使得上的單調(diào)函數(shù)?若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)
已知x=4是函數(shù)f(x)=alnx+x2-12x+11的一個(gè)極值點(diǎn).
(1)求實(shí)數(shù)a的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間;
(3)若直線y=b與函數(shù)y=f(x)的圖象有3個(gè)交點(diǎn),求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分14分)
已知函數(shù),
(Ⅰ)當(dāng)時(shí),若上單調(diào)遞增,求的取值范圍;
(Ⅱ)求滿足下列條件的所有實(shí)數(shù)對(duì):當(dāng)是整數(shù)時(shí),存在,使得的最大值,的最小值;
(Ⅲ)對(duì)滿足(Ⅱ)的條件的一個(gè)實(shí)數(shù)對(duì),試構(gòu)造一個(gè)定義在,且上的函數(shù),使當(dāng)時(shí),,當(dāng)時(shí),取得最大值的自變量的值構(gòu)成以為首項(xiàng)的等差數(shù)列。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本大題12分)
已知函數(shù)函數(shù)的圖象與的圖象關(guān)于直線對(duì)稱,
(Ⅰ)當(dāng)時(shí),若對(duì)均有成立,求實(shí)數(shù)的取值范圍;
(Ⅱ)設(shè)的圖象與的圖象和的圖象均相切,切點(diǎn)分別為,其中
(1)求證:
(2)若當(dāng)時(shí),關(guān)于的不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案