【題目】已知某橢圓C,它的中心在坐標(biāo)原點,左焦點為F(﹣,0),且過點D(2,0).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若已知點A(1,),當(dāng)點P在橢圓C上變動時,求出線段PA中點M的軌跡方程.
【答案】(1).(2).
【解析】
試題(1)根據(jù)題意橢圓的焦點在x軸上,a=2且c=,從而b=1,得到橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)點P(x0,y0),線段PA的中點為M(x,y),根據(jù)中點坐標(biāo)公式將x0、y0表示成關(guān)于x、y的式子,將P(x0,y0)關(guān)于x、y的坐標(biāo)形式代入已知橢圓的方程,化簡整理即可得到線段PA的中點M的軌跡方程.
解:(1)由題意知橢圓的焦點在x軸上,
∵橢圓經(jīng)過點D(2,0),左焦點為F(﹣,0),
∴a=2,c=,可得b=1
因此,橢圓的標(biāo)準(zhǔn)方程為.
(2)設(shè)點P的坐標(biāo)是(x0,y0),線段PA的中點為M(x,y),
由根據(jù)中點坐標(biāo)公式,可得,
∵點P(x0,y0)在橢圓上,
∴可得,化簡整理得,
∴線段PA中點M的軌跡方程是.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的一個焦點與拋物線的焦點重合,且此拋物線的準(zhǔn)線被橢圓C截得的弦長為1.
(I)求橢圓C的標(biāo)準(zhǔn)方程;
(II)直線l交橢圓C于A,B兩點,線段AB的中點為,直線m是線段AB的垂直平分線,試問直線過定點坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)的最大值為3,其圖象相鄰兩條對稱軸之間的距離為.
(Ⅰ)求函數(shù)的解析式和當(dāng)時的單調(diào)減區(qū)間;
(Ⅱ)的圖象向右平行移動個長度單位,再向下平移1個長度單位,得到的圖象,用“五點法”作出在內(nèi)的大致圖象.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】經(jīng)統(tǒng)計,用于數(shù)學(xué)學(xué)習(xí)的時間(單位:小時)與成績(單位:分)近似于線性相關(guān)關(guān)系.對某小組學(xué)生每周用于數(shù)學(xué)的學(xué)習(xí)時間與數(shù)學(xué)成績進(jìn)行數(shù)據(jù)收集如下:
由樣本中樣本數(shù)據(jù)求得回歸直線方程為,則點與直線的位置關(guān)系是( )
A. B.
C. D. 與的大小無法確定
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》是我國古代數(shù)學(xué)經(jīng)典名著,其中有這樣一個問題:“今有圓材,埋在壁中,不知大小.以鋸鋸之,深一寸,鋸道長一尺.問徑幾何?”其意為:今有-圓柱形木材,埋在墻壁中,不知其大小,用鋸去鋸該木材,鋸口深一寸,鋸道長-尺.問這塊圓柱形木材的直徑是多少?現(xiàn)有長為1丈的圓柱形木材部分鑲嵌在墻體中,截面圖如圖所示(陰影部分為鑲嵌在墻體內(nèi)的部分).已知弦尺,弓形高寸,估算該木材鑲嵌在墻體中的體積約為__________立方寸.(結(jié)果保留整數(shù))
注:l丈=10尺=100寸,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正四棱錐中,,,分別為,的中點.
(1)求正四棱錐的全面積;
(2)若平面與棱交于點,求平面與平面所成銳二面角的大小(用反三角函數(shù)值表示).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在R上的函數(shù)在[0,7]上有1和6兩個零點,且函數(shù)與函數(shù)都是偶函數(shù),則在[0,2019]上的零點至少有( )個
A.404B.406C.808D.812
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面四邊形中,,,,,將三角形沿翻折到三角形的位置,平面平面,為中點.
(Ⅰ)求證:;
(Ⅱ)求直線與平面所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com