【題目】函數(shù)的部分圖象如圖所示

)寫出及圖中的值.

)設(shè),求函數(shù)在區(qū)間上的最大值和最小值.

【答案】 .()最大值,最小值

【解析】試題分析:(1)將點(diǎn)代入,由已給條件可求得;由并結(jié)合圖象可求得.

(2)由(1)可得到,由,得,可得在時(shí),函數(shù)分別取得最大值和最小值。

試題解析:圖象過點(diǎn),

,

,得, ,

的周期為,結(jié)合圖象知,

)由題意可得,

,

,

,

當(dāng),即時(shí), 取得最大值,

當(dāng),即時(shí), 取得最小值

點(diǎn)睛: 三角函數(shù)式的化簡要遵循“三看”原則

(1)一看“角”,這是最重要的一環(huán),通過看角之間的區(qū)別和聯(lián)系,把角進(jìn)行合理的拆分,從而正確使用公式;

(2)而看“函數(shù)名稱”看函數(shù)名稱之間的差異,從而確定使用公式,常見的有“切化弦”;

(3)三看“結(jié)構(gòu)特征”,分析結(jié)構(gòu)特征,可以幫助我們找到變形的方向,如“遇到分式通分”等.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,如果輸入的t0.01則輸出的n(  )

A. 5 B. 6 C. 7 D. 8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在圓內(nèi)畫1條線段,將圓分割成兩部分;畫2條相交線段,彼此分割成4條線段,將圓分割成4部分;畫3條線段,彼此最多分割成9條線段,將圓最多分割成7部分;畫4條線段,彼此最多分割成16條線段,將圓最多分割成11部分.那么

(1)在圓內(nèi)畫5條線段,它們彼此最多分割成多少條線段?將圓最多分割成多少部分?

(2)猜想:圓內(nèi)兩兩相交的n條線段,彼此最多分割成多少條線段?

(3)猜想:在圓內(nèi)畫n條線段,兩兩相交,將圓最多分割成多少部分?

并用數(shù)學(xué)歸納法證明你所得到的猜想.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形的邊長為4,點(diǎn), 分別為, 的中點(diǎn),將, ,分別沿, 折起,使, 兩點(diǎn)重合于點(diǎn),連接.

(1)求證: 平面;

(2)求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,直三棱柱中, , , ,點(diǎn), 分別是的中點(diǎn).

(Ⅰ)求證: 平面;

(Ⅱ)若二面角的大小為,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù) 為曲線在點(diǎn)處的切線.

)求的方程.

)當(dāng)時(shí),證明:除切點(diǎn)之外,曲線在直線的下方.

)設(shè), , ,且滿足,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐,側(cè)面底面底面為矩形, 中點(diǎn) , .

(Ⅰ)求證: 平面;

(Ⅱ)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的幾何體為一簡單組合體,在底面,,平面,,,

(1)求證:平面平面

(2)求該組合體的體積

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義域?yàn)?/span>的函數(shù)是奇函數(shù).

1)求的值;

2)判斷函數(shù)的單調(diào)性,并用定義證明;

3)當(dāng)時(shí),恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案